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“For many years I was troubled by a state- 
ment attributed to Faraday, which I have not 
verified, that he held his theories by his finger- 
tips so that the least breeze of fact  might blow 
them away. I was troubled because it seemed to  
m e  that some theories are more trustworthy and 
tenable than many facts. When I realized that a 
fact to Faraday meant something different f rom 

what it did to  me, that for him a fact was not 
something he read in a book or a journal, but was 
something he observed in a laboratory and that 
Faraday was an  exceptionally able observer, m y  
troubles stopped until I began to  study mem-  
branes. Now I need two handfuls of finger-tips; 
one for alleged theories and one for alleged 
facts . From the first days the study of 
membranes has been confused by the misuse 
of theories. It would be so much better if we called 
most of  them models rather than theories. Then  
we would not have to  defend their truth but only 
their usefulness. Most of us do need models in 
order to  think. Almost everyone who thinks 
about membranes first thinks of small holes in  a 
plate which is very thin even compared to  the  
size of  the holes. Some biological membranes 
may be such diaphragms, but synthetic mem-  
branes, and many natural one‘s, have holes 
which are-much smaller than the thickness of 
the membrane. Almost everyone takes as second 
choice right-circular cylindrical pores, and as a 
third model lets the  pores curve and change in 
cross-section. I believe that a much more useful 
model resembles a pile of  sand, or brush, or tan- 
gled fish-nets in that as many channels run i n  
one direction as any other, and the channels are 
continually branching and coming together 
again. There are few if  any dead-end pockets or 
neighbouring points connected only through 
long loops. The  model need hardly be more spe- 
cific than this . Many of us are studying syn- 
thetic membranes with the hope that they may 
serve as models for natural membranes. Some- 
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times Z am hopeful that these model studies will 
give a positive contribution to our knowledge of 
physiological mem b a n e  phenomena. Often I 
can only admire the methods of the physiolo- 
gists, but perhaps remind them of Faraday’s fin- 
ger-tips and of the fact that since their phenom- 
ena are more complicated than those of the 
physical chemists, their thinking must be less 
naive. . . .” G. Scatchard (1) 

Membrane transport is a subject of great breadth, 
diversity, and complexity. Since life itself is depen- 
dent on the normal functioning of membranes and 
membrane transport systems, the barrier properties 
of membranes are an intense concern of biologists 
and biologically oriented physical scientists. The es- 
sence of the permeability problem facing the bio- 
scientist was succinctly set forth in the introductory 
thoughts of Scatchard (1)l. In particular, Scatchard 
pointed to the fabrication of models consistent with 
experimental observations and based on fundamen- 
tal thermodynamic considerations as a means of fur- 
thering comprehension of the phenomena involved. 
Since pharmacy, defined in its broadest sense, also is 
concerned with a broad spectrum of physical kinetic 
processes, the research pharmacist’s applications of 
membrane transport principles are not limited solely 
to biological areas. The development of formulations 
that meter predetermined dosages on exact sched- 
ules to intended surfaces of absorption is at least 
partially dependent on sound application of perme- 
ation theory. Selection of appropriate packaging ma- 
terials is another area where barrier properties are of 
great importance. These areas too can be advanced 
measurably by a fundamental modelistic point of 
view. Presenting the conceptual tools to accelerate 
the modelistic approach is a major goal of this re- 
view. 

There is an enormity of literature dealing with 
mass transport. Most extensive compilations (books 
and reviews) are highly specialized or slanted to the 
needs of a particular membrane transport problem 
area. Few have been directed to the specific needs of 
the medically oriented scientist. This fact has ren- 
dered difficult the selection of suitable models for 
drug delivery and absorption. Therefore, two impor- 
tant purposes of the present review are to  provide 
meaningful criteria for typing membranes and to in- 
dicate how different macroscopic fabrics and micro- 
structures influence membrane barrier properties. To 
accomplish these ends, the various possible compo- 
nents of barriers ( i .e . ,  membrane continuum, fillers, 
crystalline regions, etc. ) and shunts, pores, diffusion 
layers, etc., are discussed separately with respect to 
their influence on barrier resistance and/or perme- 
ability. Emphasis is placed on integrating them into 
an overall barrier property; attention is especially 
drawn to circumstances where permeabilities and 
diffusional resistances are additive. By using this ap- 

‘From the introductory remarks at  the 1956 Faraday Society Discus- 
sionson Membrane Transport (see Ref. 1). 

proach, it is often possible to characterize complex 
membrane structures from the dimensions, arrange- 
ments, and diffusional resistances of the component 
parts. 

To accomplish these specified goals, the content of 
the review has been primarily limited to passive 
transport (free diffusion) of nonelectrolytes in the 
absence of bulk flow; therefore, electrochemical gra- 
dients, osmotic gradients, thermal gradients, facili- 
tated transport, and active transport are not within 
its scope. Many excellent reviews of these topics can 
be found in the literature. In addition to these exclu- 
sions, laboratory methodology per se is only inciden- 
tally covered. Recent discussions on the design and 
operation of diffusional apparatus may be found in 

Before proceeding, it is worthwhile to consider in 
more detail what makes mastery of transport theory 
and its applications a valuable tool for the pharma- 
ceutical scientist. Some of the diverse array of mem- 
branes and barriers of concern within the greater 
field of pharmaceutics from the standpoints of drug 
activity, availability, or formulation development are 
compiled in Table I. Interest in the membranes de- 
picted spans considerations on structure-activity re- 
lationships Yithin drug families and drug absorption 
by whole animals to controlled drug release and ap- 
propriate product packaging. Certain specific prob- 
lems requiring application of transport theory are 
presented in Table II. Collectively, these tables give 
ample evidence that some of the most pressing prob- 
lems pharmaceutical scientists face are in the mass 
transport sphere. In this respect the tables, which 
are representative and hardly complete, speak for 
themselves. A few of these membranes and problems 
will be discussed explicitly. Whether expressly con- 
sidered or not, the theories and approach to mem- 
brane transport detailed in this review provide nec- 
essary background so that membranes can be better 
characterized and transport problems can be han- 
dled with greater facility. 

Refs. 2-8. 

FUNDAMENTALS OF MEMBRANE PERMEATION 

The Modelistic Approach-Total characteriza- 
tion of complex membranes and barriers and the de- 
velopment of suitable models to describe their prop- 
erties require characterization of each and every in- 
dependent phase and subphase constituting the bar- 
rier system, including the spacial configurations and 
arrangements of the phases and phase interactions 
with each other and with the diffusing species under 
consideration. Based on a conceptual scheme and 
on information or assumptions about these relation- 
ships, the task of building a model is to  develop 
techniques to represent all the existing interrelation- 
ships and to sort out those relevant or applicable to 
a given situation. Where there is a systematic ap- 
proach to  the construction of models, often several 
alternative models are formulated and the research- 
er’s efforts may be channeled into defining the limi- 
tations of each possibility. The result is usually a 
keener insight into the mechanics of the transport 
process. 
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Table I-Membranes and Barriers of Medical and 
Pharmaceutical Interest 

Biological membranes and barriers: 

Table 11-Dosage Form-Related Mass Transport Problems 

Preadministration: 
Leaching or sorption of drug and/or adjuvant by contain- 
em or closures 
Leaching of contaminants and/or reactants from packag- 
ing materials by ihe product (heavy metals, plasticizers, 

Cellular membranes (bacterial and mammalian) 
Mucosal barriers 

G I  
Buccal ~ _ _  . . ~ ~  

Vaginal, etc. 
Skin (eDidermis and dermis) 
Cornea- 
Whole tissues 

Films, coatings 
Polymeric containers, seals, stoppers, etc. 
Packaging films and laminates 

Time and system variable barriers: 
Fluid diffusion layers 
Dosage form boundary layers (in implants, etc.) 

Theoretical or model membranes: 
Interfacial barriers and monolayers 
Bilayers 
Polymeric barriers 
Fluid partitioning systems 

Barriers intimately associated with dosage form: 

Introduction to Membrane Characterization-It 
is necessary for the purposes a t  hand to define what 
constitutes a membrane and what constitutes a bar- 
rier and to indicate how these terms differ. A mem- 
brane, in the context of this review, is a sheet of solid 
or semisolid material of fixed dimensions which is in- 
soluble in its surrounding medium and which sepa- 
rates phases that are usually (but not necessarily) 
fluid. A membrane transport system is created when 
there is passage (active, facilitated, or passive) of so- 
lute across a membrane. The term barrier is more in- 
clusive. It is the region or group of regions within a 
system, contiguous or physically separated, that of- 
fers finite resistance to transport of a substance from 
a point in one region of a system to another point lo- 
cated at some distance down the diffusional field. 
Since it is generally convenient to think of mass 
transport in a unidimensional sense, one usually con- 
siders the line traversed as being the shortest path in 
one plane aligned parallel to the source of diffusional 
resistance to a similarly aligned plane on the other 
side of the diffusional field. In this context, the dif- 
fusional field or barrier includes unstirred fluid 
strata and all interfaces as well as all interposed 
membranes. Flowing or mechanically mixed regions 
generally offer no diffusional resistance. This as- 
sumption cannot be regarded as absolute, however, 
and each situation must be analyzed on its own mer- 
its. The total barrier property of the intervening 
space between the planes may be considered to be 
the sum of the individual resistances or barrier prop- 
erties of its component strata. 

The first step in delineating total barrier property 
is to identify all independent strata that a substance 
must traverse to pass from one point to another. 
Here we are considering, for the moment, one-di- 
mensional diffusion, i .e.,  diffusion along a single vec- 
tor that is perpendicular to the barrier planes. Inde- 
pendent strata are considered to offer uniform resis- 
tance, a t  least to a first approximation, over their 
entire thickness. In the extreme, a lamina may be 
taken as a single molecular distance (9, 10). How- 
ever, usually thick regions exist where potential en- 
ergy barriers for each molecular move in the vector 

etc.) 
Sorption and /or permeation of containers, coatings, etc., 
by undesirable agents from the external environment 
(moisture, oxygen, etc.) 

Postadministration: 
Drug delivery from the intact physical system-timed- 
release properties 
Disintegration (permeation of water into solid matrix) 
Dissolution 
Absorption 
Biological distribution 
Elimination 
Protection (k, protective ointments)- 

of the flux are of constant magnitude, and the full 
thickness of such regions may be considered as an in- 
dividual barrier segment. 

To describe a barrier in terms of the number and 
placement of its laminae, it is necessary to develop a 
convention affording both identification of each dis- 
tinct segment of a particular composition and classi- 
fication in terms of the relative positioning of the 
strata. The simple method of Barrer (11) suffices for 
most cases. In this notation, each laminate of a given 
type is given a letter designation. Furthermore, if 
noncontiguous strata of a given property are repeat- 
ed in the series, the letter designation is repeated. As 
an example, consider the situation where a homoge- 
neous membrane is interposed between two like 
fluid phases, i.e., two aqueous compartments. The 
first region of potentially significant diffusional resis- 
tance is the unstirred fluid region on the high diffu- 
sant concentration side of the system. Neglecting in- 
terfaces, the membrane is a second laminate and the 
unstirred fluid region generated at the other mem- 
brane interface is a third. Since the fluid regions are. 
comparable in composition, excluding considerations 
of diffusant concentration, this is an ABA system. If 
a second membrane of different composition is 
placed downstream and permeation of the system is 
considered from the first fluid compartment to a 
third fluid (aqueous) compartment, the system may 
be characterized as being ABAACA if the middle 
fluid compartment is stirred (this will generate a dif- 
fusion layer at each membrane interface in the inter- 
nal compartment) or ABACA if the middle compart- 
ment is unstirred and the diffusional resistance is 
continuous across this compartment’s full thickness. 
As in the situations cited here, it is usually a 
straightforward process to identify potentially signif- 
icant diffusional strata. Where there are questions 
regarding the role of regions such as interfaces or dif- 
fusion layers, it is advantageous to include them in 
the treatment or model. The point where their bar- 
rier contributions are truly insignificant eventually 
becomes mathematically evident and derived perme- 
ability expressions are readily simplified. 

The next logical step in barrier characterization is 
to determine the thicknesses of the identified lami- 
nae. Often the thicknesses of the membranes in the 
composite barrier may be measured directly. %ffec- 
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tive diffusion layer thicknesses are a function of sol- 
vent viscosity and stirring at  a given temperature 
(12) and also of the molecular volume of the diffus- 
ing species. Their widths are usually estimated indi- 
rectly during the permeation experiment (13, 14) or 
by independent experiment using comparable me- 
chanical conditions (15). Direct measurement of dif- 
fusion layer thickness on occasion has been accom- 
plished (16). In some cases, particularly in biological 
systems, barrier strata are highly interdigitated, i.e., 
the brush border of the GI lining and the juncture of 
epidermis with dermis. Such cases defy exact mathe- 
matical resolution, and effective thicknesses must be 
assigned. Usually, the error in such approximations 
is no more than the expected biological variations in 
permeation experiments, so these approximations 
suffice in a modelistic approach. 

Having identified all participating strata, it  is then 
necessary to characterize each individually with re- 
spect to gross physical state (solid, semisolid, or 
fluid) of the material(s) from which it is constructed 
and its detailed structure (11, 17). Variations in 
these details are limitless because segments can be, 
and often are, multiphasic and of diverse composi- 
tion. Fluid phases are, to good approximation, ho- 
mogeneous and of constant diffusional property. 
Membranes, on the other hand, are generally com- 
plex structures requiring more precise analysis and 
description. Although there is no generally agreed on 
method of classification, most membranes can be 
characterized as being composed of three general 
types of phases: (a) continuous, (b) shunt, and (c) 
dispersed. These phase types must be further classi- 
fied as primary, secondary, tertiary, etc., the sub- 
classifications depending on the spacial relationships 
of each phase to the other phases present. 

A primary continuous phase is a phase that is un- 
interrupted between membrane surfaces as well as 
laterally or is in the plane perpendicular to the flux 
vector. Depending on its composition relative to the 
compositions of associated phases, it may provide an 
uninterrupted diffusional path for a diffusing species 
or be operationally impervious and exist as a sup- 
porting structure only. A primary shunt phase is one 
that passes completely through the membrane but 
that is laterally discontinuous, i.e., a pore or chan- 
nel. These too may be inert with respect to perme- 
ability, may provide parallel diffusional pathways 
depending on relative compositions, or may be the 
sole diffusional pathway. Dispersed phases are em- 
bedded in continuous phases or shunt phases. They 
are discontinuous along the flux vector and do not 
provide an uninterrupted pathway through the 
membrane or through any of its subphases. If they 
are also discontinuous laterally, they are fillers or in- 
clusion bodies (biological cases). Fillers are common- 
ly found in synthetic membranes because they favor- 
ably influence mechanical properties such as elastici- 
ty, permeability, and resistance to tear (18). Dis- 
persed phases that are continuous in the plane per- 
pendicular to the flux vector are also found in syn- 
thetic membranes. Netting is sometimes embedded 
in a membrane structure as a means of reinforce- 

ment. The scanning electron micrographs of the 
0.45-pm and 0.4-pm membranes in Figs. 1 and 2, 
respectively, provide examples of the ultrastructure 
of real membrane&-4. Since there can be phases with- 
in phases and phases, in turn, within these, it is nec- 
essary to  designate whether a given identified phase 
is contributing to the coarsest structural breakdown 
(primary) or is a subphase of a primary or higher 
order phase. In this regard, each major phase identi- 
fied must then be examined for the presence of sec- 
ondary phases of each type, and these in turn for ter- 
tiary phases, etc., until all distinct regions are ac- 
counted. Secondary phasic structure is common in 
real membranes; recourse to characterization of ter- 
tiary and finer subclassifications is generally unnec- 
essary. 

Once a barrier has been segmented and its seg- 
ments characterized with respect to structure and 
composition, i t  is then necessary to assess the man- 
ner in which the diffusing species interacts with the 
various phases and subphases it must pass through, 
both on an absolute and relative basis. In other 
words, diffusivity within a given homogeneous region 
must be considered, as must adsorption onto or parti- 
tioning into all other phases in contact with the par- 
ticular region under consideration. Subsequent sec- 
tions provide some means of coping with these as- 
pects. In narration, the process of characterization 
may seem exceedingly complex; in practice, it is 
usually manageable, particularly with synthetic 
membranes. Where membrane properties are in- 
determinate or too complex for exact physical and 
chemical description, use of simplifying assumptions 
and/or hybrid diffusivities still allows for construction 
of useful models and subsequent membrane typing. 

Passive Diffusion: Kinetic and Thermodynamic 
Considerations-Diffusion and Probability-Diffu- 
sion is by nature a probabilistic process involving the 
random movement of molecules. The following de- 
scription of the classical experiment involving the 
diffusion of a dye solution into solvent provides a feel 
for the process. Consider a cylinder half filled with 
solvent and then layered over with dye solution. 
Suppose these are separated by a nonpermeable di- 
vider which can be removed instantaneously without 
producing mechanical or other nondiffusive mixing. 
The following will occur upon removal of the divider. 
Throughout each medium the molecules will be 
moving randomly among each other roughly with 
translational velocities of a rifle bullet, the course of 
each molecule, solvent and dye alike, being extreme- 
ly erratic due to multiple elastic collisions with like 
and unlike molecules in its physical path. In any fi- 
nite time and in every part of the system, molecules 
of solvent and solute (where dye exists) will be di- 
rected along every vector of a three-dimensional 
coordinate system. In reference to the plane of inter- 
est, namely the dye solution-pure solvent interface, 
the molecules will be moving laterally within the 

Millipore MF. 
Nucleopore. 

General Electric Co. 
'Photographs of the Millipore and Nucleopore filters are courtesy of 
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Figure 1-Scanning electron micrograph of a filter (Milli- 
pore) rated as 0.45 pm in pore size. The highly porous nature of 
the structure and the nonlinearity of the “holes” are notable. 

plane as well as in all angles up to and including a 
right angle through the plane. 

In the instant following the removal of the divider 
between solvent and solution, dye molecules at the 
interface will either be kinetically thrust back into 
the bulk of the solution or move laterally within the 
interface or penetrate the pure solvent. Due to the 
large numbers of molecules involved, dye molecules 
will instantaneously follow each of these courses. In 
this instant, dye molecules leaving the interface to 
enter the solution phase will be offset by an equal 
number (statistically speaking) of dye molecules 
moving from the depth of the solution to the inter- 
face. However, dye molecules diffusing into the pure 
solvent will be offset by only solvent molecules mov- 
ing in the opposite direction. The random move- 
ments of these respective species thus lead to a net 
penetration of the dye into the pure solvent and sol- 
vent into the dye solution. In other words, the defi- 
ciency of solute molecules in the direction of pure 
solvent and the deficiency of solvent molecules in the 
direction of the solution, coupled with the fact that 
on the molecular level the system is in a highly dy- 
namic state, cause the components to flow or diffuse 
into one another nonselectively and randomly. The 
net mass “movement” results from the concentration 
gradient of dye, initially across the interface but ulti- 
mately expanding through the entire system. In this 
case, an equal concentration gradient opposite in 
sign exists simultaneously for the solvent. The slope 
of the gradient is a reflection of the inequality of 
concentration across any plane perpendicular to the 
flux vector and, clearly from the example, the differ- 
ence in concentration determines the net exchange of 
component across any chosen plane. In this manner, 
the rate of movement of mass across a given region is 
related to  the concentration differential of the agent 

under consideration over that region. Obviously, the 
interdiffusion of miscible substances is a spontane- 
ous, irreversible process. The pure components con- 
stituting a diffusively equilibrated system cannot be 
regenerated without doing work on the system. 

Thermodynamic Considerations-The tendency 
toward total randomness by diffusive flow can be 
equated with an increase in entropy. By thermody- 
namic definition, a spontaneous process is one where 
there is an overall decrease in free energy of the sys- 
tem. At isothermal conditions: 

AG = AH - T A S  (Eq. 1) 

or the free energy change in the system is equal to 
the enthalpic change, AH, less the product of the ab- 
solute temperature, T, and the entropic change, AS. 
In the case of components that form ideal solutions, 
there will be no enthalpic contribution to diffusive 
mixing and the entire net change in free energy 
arises from increased entropy. I n  all real situations, 
there will be some enthalpic input into the overall 
free energy change; however, its magnitude in gener- 
al will be relatively small and the diffusive process 
can be regarded as an entropically driven phenome- 
non. 

It is hoped that a t  this point a picture is forming 
which, on one hand, describes the individual mole- 
cule’s movements as being without preferred direc- 
tion, a so-called random-walk process, but which at 
the same time, due to the large populations of mole- 
cules involved, prescribes that the direction of the 
total population is relentlessly toward regions of low 
concentration from relatively concentrated areas. 
Furthermore, it is implicit that interdiffusion of at 
least two substances is involved and there must, 
therefore, be multiple diffusion equations to describe 
the movement of each species present. For two com- 

Figure 2-Scanning electron micrograph of a 0.4-pm filter 
(Nucleopore). In #is filter the pore density is relatively sparse 
but the pores are compensatingly uniform, linear, and short. 
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ponents, two equations are actually necessary. How- 
ever, since in the absence of a net volume change 
across the plane of reference the rates of interpene- 
tration are equal in magnitude but opposite in sign, 
one equation suffices to describe the process and the 
second equation need not be considered explicitly. It 
is important to recognize this mutual dependency of 
the diffusion coefficient on each species. This is par- 
ticularly true when the molecular species involved 
are disproportionate in size (i.e., water versus pro- 
tein) because the larger species may be limiting and 
set the diffusive current for each species a t  a low 
value. In the case of diffusion of a substance through 
a stationary solid or semisolid phase such as a mem- 
brane affixed into place in a diffusional apparatus, it 
is convenient to view the stationary phase as a fixed 
reference plane and only consider the flux of the mo- 
bile penetrant. 

Diffqsion in An Isotropic Medium-Pick's First 
Law-It was postulated by Bertholot (19) in the 
early 1800's that the diffusive flow of mass or flux is 
proportional to  a constant times the concentration 
gradient of the diffusing species across the region of 
interest. Nearly 50 years later, Fick (20) reformulat- 
ed this law by analogy to heat transfer and, most im- 
portantly, gave credence to the postulate by means 
of experiment. The first of the two diffusion laws 
that bear Fick's name is a simple statement of this 
principle, namely: 

J = - D (g) (Eq. 2) 

The formula explicitly says that the flux, J, of a 
component across a unit of area in a predetermined 
reference plane is proportional to the concentration 
differential across that plane, a conclusion presented 
intuitively in the preceding discussion. The term D 
is the proportionality constant, and the negative sign 
indicates mathematically that the current is in the 
direction of decreasing concentration. It was initially 
believed by Fick that D was a constant for a given 
system. It is now known that D is concentration sen- 
sitive, in the general case for reasons paralleling 
those that lead to deyiations at  high concentration 
from the ideal gas laws, osmotic pressure laws, etc., 
and in specific cases due to the penetrant directly in- 
fluencing the properties of the diffusion medium 
(i.e., time- and concentration-dependent effects on 
polymeric films, etc.). For this reason, D is designat- 
ed a coefficient, not a constant. As expressed in Eq. 
2, D is a differential diffusion coefficient. 

In certain experimental methods, particularly 
those used to characterize membranes, an averaged 
integral diffusion coefficient, D, is obtained; this is 
related to the differential coefficient by: 

(Eq. 3Y 

where the thickness of the regions is measured from 
x = 0 to x = h. When D is independent of concentra- 
tion, it is obvious that D = D. The units of D (or D) 

51n the remainder of the text, the symbol D will be used interchangeably 
for both differential and integral diffusion coefficients. 

are distance squared per time, preferably square cen- 
timeters per second. It is conceptually helpful to 
translate this to velocity by realizing that, for diffu- 
sion through a uniform field of unit thickness (ie., 1 
cm), the diffusivity corresponds to the average dis- 
tance the diffusing particle travels per unit of time 
(i.e.,  centimeters per second) in the direction of flow. 

Although the concentration differential, an experi- 
mentally easily assessable parameter, is most fre- 
quently taken as the driving force in diffusion, the 
chemical potential differential or activity differential 
is the fundamental parameter determining the direc- 
tion and rate of flux. Barrer has derived the relation- 
ship between concentration and chemical potential 
in the following fashion (21). The force acting on a 
molecule a t  point x is: 

6 
FCC-- d x  (Eq.4) 

and thus the total force acting on all molecules is: 

(Eq.5) 

Assuming flux to be proportional to the total force, 
one obtains: 

J = - B C ; I ;  dr  

where B is a coefficient reflecting the mobility of the 
diffusing species. The equation relating activity to 
chemical potential is: 

p = p ~ + R T l n a  (Eq. 7 ) 

where a is activity. Therefore: 

d p  = RT4lnaI (Eq. 8) 

and: 

C da J = - BRT ;I; (Eq.9) 

and, by multiplying by unity in the form dC/dC: 

J = - BRT d l n a  dC 
(Eq. 10) 

which, when compared with Fick's first law, yields 
for the differgntial diffusion coefficient: 

dlna  
D = BRT __ d 1nC 

Both B and d In a l d  In C may be dependent on C and, 
as Barrer (21) further pointed out, each may in turn 
depend on x in an inhomogeneous medium. Having 
introduced these complexities, it is necessary to pro- 
vide the perspective that in the majority of mem- 
brane transport situations of biological and pharma- 
ceutical interest, concentration differentials and in- 
tegral diffusivities derived therefrom suffice to char- 
acterize permeation phenomena in both absolute and 
relative terms. In other words, activity coefficients 
are usually confined within a narrow range in a given 
isotropic medium at  the low concentrations one is 
limited to by the physicochemical and pharmacolog- 
ical natures of drug species. 
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Fick’s Second Law-Although Fick’s first law is a 
concise mathematical statement, it is not directly 
applicable to the solution of most permeation prob- 
lems for it contains three principal variables: J, C, 
and x ( 2 2 ) .  Further, J itself is a multiple variable, 
the net amount of a substance crossing a unit of area 
of the diffusional reference plane, dM, per unit time, 
dt. The number of these variables is effectively re- 
duced by one in Fick’s second law, which is the fun- 
damental mathematical statement of diffusion and 
the useful form in resolving most diffusion problems. 

When D is independent of x, Fick’s second law is 
readily derived from Fick’s first law. Consider the 
volume element lying between two planes perpendic- 
ular to the vector of diffusive flow, x,  separated by a 
distance, A X .  The rate of entry of diffusant (in units 
of mass per time) into the volume element per unit 
of area from the high concentration side is: 

where C is the concentration in the plane parallel to 
and equidistant from the two planes prescribing the 
volume element. Similarly, the loss of mass of diffu- 
sant from the low concentration interface may be de- 
scribed by: 

The terms C f ( A X / 2 ) ( d C / d x )  give the concentra- 
tions at the planar boundaries of the volume element 
chosen. The rate of change of mass of diffusing sub- 
stance in the volume element is obviously equal to 
the difference in the rate of entry and escape, i.e.: 

(Q. 14) dM,n dMout d2C 
dt dx dt = D A X  7 

but this is also equal to the rate of change in concen- 
tration within the volume element, dC/dt, times the 
volume of the element, AX (unit area is assumed), 
and thus: 

This is Fick’s second law or the differential equation 
of diffusion for the unidimensional flow case. If more 
than one-dimensional diffusion is to be considered, it 
is necessary t o  assess the net change in mass along 
the other diffusional vectors by similar methods and, 
in the notation of rectangular coordinates, Fick’s 
second law may be generalized to: 

A full derivation of Eq. 16 was presented by Crank 
(23 ) .  

In essence, Fick’s second law states that the rate of 
change in concentration in a volume element within 
the diffusional field is proportional to the rate of 
change in concentration gradient at that point in the 
field, the proportionality “constant” being the diffu- 
sivity, D. There are numerous exact solutions of Eq. 

15, a particular derivation depending on the bounda- 
ry conditions imposed by the diffusion problem. 
Most mathematically tractable cases require or as- 
sume invariant diffusivity. Only those situations with 
obvious bearing on pharmaceutical problems will be 
discussed here. For more complete coverage and par- 
ticularly for specifics of the derivations, the reader is 
referred to Refs. 22-26. 

The Simple “Zero-Order” Flux Situation-The 
solution of Fick’s second law for the commonly em- 
ployed unidimensional experimental situation, where 
the concentration differential is maintained at a con- 
stant value during the course of a run and the diffu- 
sant receptor compartment is maintained at essen- 
tially zero concentration or a “sink” condition, was 
provided by Daynes (27)  and later generalized by 
Barrer ( 2 8 ) .  Considering the diffusive current to be 
unidirectional, beginning at x = 0, the high concen- 
tration surface of the membrane, and moving toward 
the other membrane surface where x = h, the bound- 
ary conditions are in precise terms; C (concentra- 
tion) is Co (constant) a t  x = 0 for all values of t 
(time), C = 0 at all x > 0 for t = 0 (initial condi- 
tion), C = 0 at  x = h for all values of t (sink condi- 
tion), and diffusivity, D, is constant. For these con- 
ditions, the concentration at any point x (or in a 
plane through x perpendicular to the flux vector) is 
given by: 

This equation can be solved for the cumulative mass 
of diffusant per unit area, M, which passes through 
the membrane in time, t, by the following three 
steps: (a) differentiation with respect to x to obtain 
the instantaneous concentration gradient; ( b )  deter- 
mination of the flux, dM/dt, at x = h; and (c) inte- 
gration from t = 0 to t = t. The resulting equation 
is% 

which, as t - a, approaches the straight line given 
by : 

(Eq. 19) 

In effect, Eq. 19 is the situation where the perme- 
ation has attained a steady state, ‘dC/dt at all x 
within the field is zero, and thus the amount pene- 
trating per unit time is constant. The steady-state 
flux is readily obtained from Eq. 19 by differentia- 
tion and is: 

dM DC, 
dt h 
- 

Furthermore, if the steady-state line is extrapolated 
to the time axis, one obtains a value of t ( t  at  M .= 
0) which is: 

h2 tl. = - 6D (Q. 21) 

6The integration constant here and in subsequent derivations is zero due 
to the choice of boundary conditiofis. 
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This intercept is called the lag time, tL, and it 
provides estimation of D providing the diffusional 
field (membrane) thickness is known. The lag time, 
coupled with the steady-state flux, provides esti- 
mates of all the permeation controlling variables be- 
cause it affords calculation of the membrane surface 
concentration, CO. For an isotropic membrane, the 
steady state is achieved within 1% error when Dt /h2  
cz 0.45, which corresponds to about 2.7 times the lag 
time, t~ (29).  It should be noted that boundary con- 
ditions to this point apply to concentrations existing 
within the membrane, albeit a t  the surfaces of the 
membrane. In the typical membrane experiment, 
one measures concentrations in the external fluids 
bathing the membrane. In most instances, there is a 
facile equilibrium between the membrane and the 
phases contiguous to it. Such equilibria are ex- 
pressed in terms‘ of solubility coefficients (gaseous 
contiguous phases) or distribution or partition coeffi- 
cients (liquid, semisolid, and solid contiguous phas- 
es). In other words, i t  is the usual case that CO = 
Co’K, where CO’ is the applied phase concentration 
and K is the partition coefficient. Combining this 
with Eq. 19 yields: 

h (Eq. 22) 

In the case of a gaseous applied phase, pressure or 
partial pressure of the diffusing gas is used in lieu of 
concentration and K is the solubility coefficient of 
the gas in the membranous material. For some mate- 
rials, e.g., synthetic membranes, the equilibrium 
coefficient can be obtained independently by equili- 
brating the membrane material with the applied 
phase and determining the relative concentrations in 
each. Alternatively, the distribution can be mea- 
sured knowing Co’ and determining the steady-state 
flux and the lag time in a diffusional run (30) .  Both 
methods generally yield comparable results, attest- 
ing to the fact that the diffusant’s interfacial equilib- 
rium between membrane and applied phase is basi- 
cally instantaneous. For those unusual cases where 
the equilibrium is not instantaneous, one has in ef- 
fect an interfacial barrier of significant diffusional 
resistance so recourse to analysis of barriers in series 
is necessary. 

In many situations of pharmaceutical interest 
(most biological cases), it is either impossible or ex- 
perimentally difficult to measure distribution coeffi- 
cients by either the equilibrium or kinetic (diffusion- 
al) method. In such instances, one is limited to char- 
acterizing permeability by the composite term, DK, 
which is often designated as the permeability coeffi- 
cient, P. When only P can be measured, it is impos- 
sible to separate diffusive and gradient (partitioning) 
contributions to flux. This situation is particularly 
limiting when relative fluxes of several compounds 
are being compared. Relative permeabilities are de- 
termined by the influences of the structural modifi- 
cations on both D and K, and one is at a loss to as- 
sign the effects to either of these specific parameters. 

Since diffusive processes are often thought of and 
treated as kinetic problems with obvious analogy to 

chemical kinetic processes, it is interesting to ana- 
lyze this common transport problem in these re- 
gards. The boundary conditions of constant applied 
phase concentration, CO’, on one side of the mem- 
brane and a receiver sink lead to a zero-order perme- 
ation process once the  steady state has developed. 
The .zero-order “rate constant” is equal to KDlh.  

Short Time Approximation-As stated previously, 
Eq. 18 converges at large values of t to the straight 
line given by either Eq. 19 or 22.  In circumstanc- 
es where diffusivities are very small or membranes 
are very thick, extremely long times are required to 
attain steady-state conditions and diffusional runs 
are very lengthy. Protracted experiments are at least 
analytically inconvenient and, in addition, foster 
many ancillary but very troublesome problems of an- 
alytical origin (instrument stability, overgrowth of 
microbes, etc. ). Furthermore, considering the limited 
solubilities of some compounds, coupled with con- 
centration requirements for analysis, maintaining a 
receptor sink condition to a sufficient approximation 
can be difficult or impossible in some situations. All 
equations based on the series converging at  large 
values of time would be dubious if not totally inap- 
plicable under these circumstances. Rodgers et al. 
(31) and Short et al. (32) provided an alternative, 
although somewhat untested, approach to handle 
such cases. Collectively they derived a general ex- 
pression converging at short time by means of a Fou- 
rier transformation of Eq. 18 and its integration. The 
final expression for small t is: 

A plot of the log [ M / d ]  versus l / t  yields a slope of 
h2/9.2D, providing an estimate of diffusivity, D, for 
known membrane thickness, h. The terms M,  t, and 
K have the same meaning as in Eqs. 18-22. This line 
intercepts with the l o g [ M / d ]  axis a t  log 
[ ( s C ~ ’ K D ~ / ~ ) / ( a l / ~ h ~ ) ]  which, in conjunction with 
the slope, affords individual estimates of all the ex- 
perimental variables. Rodgers et al. (31) indicated 
that there is approximately a 1% error by both short 
time and long time converging series in their respec- 
tive approximated forms (converged forms) at 2.7 
times the standard lag time, t ~ .  This is taken as the 
juncture of the validity and applicability of the two 
equations. In other words, the limit of use of the 
short time approximation is up to 2 . 7 t ~ ,  which is 
about the onset of the steady state and the beginning 
point of applicability of the long time converging 
equation. Rodgers et al. (31) also showed that values 
obtained by the short time approximation for the 
diffusivity of helium in glass are comparable to those 
obtained by other investigators using the more con- 
ventional diffusional analysis. 

Solutions Involving Quasisteady State-To this 
point, we have dealt with the simplest transport case 
in an isotropic medium. A more general solution, 
where there is an initial uniform concentration in the 
membrane and an initial concentration in the recep- 
tor phase, was developed (33) .  Such cases are solved 
by the assumption of independent streams; that is, 
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diffusion from the contiguous phases into the mem- 
brane and from the membrane into the external 
media are solved individually and summed to give 
the instantaneous concentration a t  any point, x ,  in 
the membrane slab at  any arbitrary time, t. When 
either the applied phase and/or the receptor phase 
concentrations vary with time, the mathematical 
analysis is considerably more complicated, and utiliz- 
able solutions to Fick’s laws are generally limited to 
conditions after establishment of the concentration 
gradient across the slab. In other words, after some 
finite time, an instantaneous or quasisteady state 
develops and the time course for the diffusional pro- 
cess is initiated and followed after the onset of the 
quasisteady state. Requisite to successful analysis of 
these situations are the following conditions: 

1. The gradient within the membrane must in- 
stantaneously adjust to the external conditions (con- 
tiguous phase concentrations). 

2. The amount (not concentration) of diffusant in 
the membrane must be negligible. 

These conditions are approached closely for very 
thin membranes. Ultrathinness is not an absolute re- 
quirement, however, as pointed out by Barnes (34). 
When the conditions are such that there is a linear 
fall of concentration within the barrier, the instanta- 
neous concentration gradient may be expressed by: 

where Co and Ch are the respective surface concen- 
trations of the membrane. According to Fick’s first 
law, the instantaneous flux per unit area would be: 

This can be related to concentrations in the contigu- 
ous phases by incorporation of the appropriate parti- 
tion coefficients. When the amount of material with- 
in the membrane is negligibly small compared to 
that in the external media, the material balance 
change in the external phases may be represented, 
respectively, by ( M D  - k f ) / v D  and ( M R  + kf)/vR, 
where M D  and MR are the total amounts of diffusant 
initially in the high concentration (donor) and low 
concentration (receptor) contiguous phases, respec- 
tively; VD and VR are the respective volumes in these 
phases; and M is the net mass change in the donor 
phase in time, t (35). On substitution of these ex- 
pressions into Eq. 25, one obtains: 

M R + M )  (Eq.26) 
d t  - h VD 

which integrates to: 

When the phase volumes are equal and M R  is zero, 
Eq. 27 simplifies to: 

2DK M D  -2M 
hV = - I n [  M D  ] (Eq. 28) 

where V is the volume of either phase. Furthermore, 

since: 

and ( M D  - M ) / V  and MD/V are the donor concen- 
trations at  finite time, t, and at  t = 0, respectively: 

2DK 2c‘ - Cd 
mt = -1n [ T I  (Eq. 30) 

Therefore, a plot of the log [(2C’ - CO’)/Co’] against 
time yields a straight line with a slope of -0.87 
(DK/hV).  In situations where these equations are 
applicable, separation of the partition coefficient, K, 
and the diffusivity, D, is not possible without an in- 
dependent measurement of one of these parameters. 

A special but important case is derivable from Eq. 
27 for the situation where the diffusant is collected 
into a receptor sink. This is to a first approximation 
the situation for absorption of soluble drugs from the 
GI tract since the body acts as an overwhelmingly 
large reservoir. In this circumstance, VR may be as- 
sumed infinite (very large with respect to V D )  and 
Eq. 27 simplifies to: 

which, by manipulation similar to the previous case, 
yields: 

D K  C’ h ~ ,  t = - I n 7  co 

Diffusive phenomena obeying this relationship corre- 
spond to simple first-order processes and, for a given 
run, the first-order rate constant is given by (DK/ 
hVD). The conditions in the typical dialysis experi- 
ment are also suitable for the use of this mathemati- 
cal form. In this case, the dialyzed small molecule is 
continuously flushed from the receptor compartment 
to maintain the maximum concentration differential 
throughout the protein purification or other separa- 
tion procedure. 

One further general case should be considered: the 
situation where a constant concentration is main- 
tained on one side of a membrane system and the 
concentration on the other side is allowed to ap- 
proach equilibrium. The boundary conditions are 
specifically CU = CO for all t ,  C R  = 0 (or more gen- 
erally C(OH) at t = 0, and CR > 0 at  t. By analogy 
to the previous cases, one can write for the flux per 
unit area: 

This integrates to: 

which, when C(OR) = 0,  leads to  an obvious simplifi- 
cation. Geometry considerations aside, Eq. 34 ap- 
proximates the cases of absorption of a drug by a 
small organism in a large drug reservoir (microbes in 
a beaker of drug solution or goldfish in a tank of 
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drug solution) or of gases through the lungs, the at- 
mosphere in this latter instance acting as the con- 
stant concentration reservoir. 

Temperature Effects-Regardless of the diffusional 
system and the mathematical model required to 
characterize the same, the temperature dependency 
in all these instances essentially resides entirely in 
the temperature dependency of the diffusion coeffi- 
cient. Partition coefficients (but not gaseous solubili- 
ty coefficients), volumes, membrane thicknesses, 
etc., are relatively unaffected by temperature varia- 
tion. The diffusion coefficient may be written in the 
form: 

(Eq. 35) 

where DO is the hypothetical diffusivity at  infinite 
temperature (from the Y intercept of a plot of log D 
versus 1/27 and Ea is the activation energy. Ea is 
markedly influenced by the nature of the barrier; 
values range from about 5 kcal/mole for diffusion of 
low molecular weight nonelectrolytes in liquids to 
15-20 kcal/mole for diffusion of comparable com- 
pounds in some polymeric structures (36). 

Barriers in Series: Diffusion through Laminat- 
ed Structures-General Considerations-Without 
exception, the systems treated to this point have 
dealt with situations where concentration gradients 
are confined entirely within a single isotropic seg- 
ment of material. For many transport systems, gra- 
dients are distributed over several -contiguous or 
noncontiguous strata in a multilayered barrier. Dif- 
fusion through a thick segment of a biological tissue 
like a muscle is one case in point because the diffus- 
ing substance must alternately pass through cell 
membranes and cell cytoplasm. Diffusion through 
plastic laminates used as packaging materials is an- 
other case of pharmaceutical interest. In formulating 
an attack on characterizing the permeability of 
stratified barriers, one must consider how the con- 
secutive strata are arranged and characterize the in- 
dividual physicochernical properties and dimensions 
of each distinct phase. Zwolinski et al. (9) provided a 
basic approach for analysis of laminates. Using rate 
theory and a diffusional model which treats diffusion 
as point-to-point jumps of the diffusing molecules, 
they derived equations which relate the rate of 
movement of matter in the steady state to the rela- 
tive heights of the potential energy barriers encoun- 
tered in each molecular move. The diffusion constant 
in a given isotropic field (layer) derived in this anal- 
ysis i s  equated to the square of the mean molecular 
jump distance, A,  times a rate constant, kl, ie.: 

D, = h,2k ,  03s. 36) 

In extending this analysis, Scheuplein ( 10) sim- 
plified the original expressions, arriving at the fol- 
lowing generalized result: 

D = D~ EolRT 

where (n - 2) is the total number of barriers exclu- 

sive of the interfacial barriers at the extremes of the 
diffusional field, A C  is the instantaneous concentra- 
tion differential across the whole system, ki is the 
rate constant in the ith layer as defined by Eq. 36, 
and Ki is the distribution coefficient in the ith phase 
with respect to the external phases, which are as- 
sumed to  be of the same composition. In effect, Eq. 
37 states that the reciprocal of the total, complex 
permeability coefficient, PT, is equal to the sum of 
the diffusional resistances encountered in each lami- 
na. In this context, diffusional resistance is equal to 
the sum thickness of the individual isotropic seg- 
ment, NiA (where hri is the number of unit molecular 
"jumps" within that part of the field), divided by 
t,he diffusion coefficient. The order in which the po- 
tential energy barriers are met within the diffusional 
field does not influence the net steady-state flux 
across the complex barrier. This latter generalization 
must only be applied to situations where resistances 
in all sections of the diffusional field are independent 
of diffusant concentration. In this situation, the dif- 
fusional resistance, Ri, in the ith lamina can be de- 
fined by (37): 

(Q. 38) 

where Pi is the thickness-weighted permeability of 
t.he ith segment; and hi, Di, and Ki are thickness, 
diffusivity, and partitional coefficient, respectively. 
The total diffusional resistance7 may be computed 
by : 

or: 

(Eq. 40) h, +- D.K,  

where the distribution coefficients are computed for 
a given phase with respect to the initial external 
phase in the system. The terms hl, ha, . . . , h, repre- 
sent the thickness of the individual strata, and DI ,  
D2, . . . ,  D ,  represent the respective diffusivities in 
each region. Thus, the composite permeability coeffi- 
cient for stratified barriers may be obtained with a 
knowledge of individual thickness and diffusivities of 
each barrier phase plus the equilibria function be- 
tween the ith phase and the initial external phase 
(again we assume the terminal external phase to be 
the same as the initial external phase). In some 
cases, these properties may be obtained by indepen- 
dent analysis of the various segments, the properties 
of the laminate then being formulated from the 
properties of its component parts. This approach 
would have particular utility in designing laminated 
packaging materials to meet predetermined specifi- 
cations. These equations have been invoked to ex- 
plain data for many diverse experimental situations. 
~~ 

It may be noted that the additivity of diffusional resistances in series is 
analogous to the additivity of sequential electrical resistances. The K 
values appear as relative caparity terms. 
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Some particularly good examples may be found in 
Refs. 9, 10, and 37-42. 

Three-Ply Laminate-Derivation of the composite 
permeability coefficient for a three-ply membrane 
placed between two well-stirred liquid phases (as- 
suming insignificant diffusion layer resistance), 
where all membrane strata are of different composi- 
tion, serves to illustrate the above method. The total 
resistance encountered by the permeant in traversing 
the composite barrier, based on Eq. 40, would be: 

(Eq. 41) 

and: 

If resistance in one segment is overwhelming, Eq. 42 
simplifies to PT = (KiDi/hi) ,  where i equals 1, 2, or 
3, and the composite barrier property is determined 
by the single high resistance phase. If but one layer 
is of insignificant diffusional resistance (arbitrarily 
the third), the overall permeability coefficient be- 
comes: 

(Eq. 43) 

The total permeability coefficient derived here dif- 
fers from that derived by Barrie et al. (42) by the 
product of the total thickness, hl + h2 + . . . + hn. In 
effect, Barrie et al. defined the permeability coeffi- 
cient as an intensive property or averaged property 
per unit thickness over the total thickness. Recogniz- 
ing that permeability is not uniform throughout the 
laminated field, we prefer to view it as the summed 
property irrespective of total thickness, i.e., as an ex- 
tensive property. In use (that is, when substituted 
into a flux equation), the expressions are equivalent 
because total thickness appears twice and as a ratio 
in the Barrie et  al. case and, hence, “cancels.” 

I t  is important to realize that, regardless of bound- 
ary conditions, a diffusional profile, i.e., a plot of the 
amount that has penetrated a barrier with respect to 
time, cannot be used to distinguish between a simple 
isotropic barrier and a series barrier. For a given ex- 
perimental condition, profiles obtained with simple 
and series barriers will be qualitatively the same. 
Thus, in the absence of knowledge of the diffusional 
mechanism, standard treatment of the diffusional 
curve and, particularly, calculation of diffusivity from 
the Daynes and Barrer lag time relationship must be 
performed with caution. 

Once the series barrier has been described in terms 
of its complex permeability coefficient, this term 
may be substituted for the simpler coefficient, KD, 
in any flux equation previously presented for steady- 
state or quasisteady-state conditions. The nonsta- 
tionary state, on the other hand, is exceedingly more 
complex. This was quantitated for zero-order perme- 
ation (constant applied phase concentration and re- 
ceptor sink, etc.) for a three-layer laminate by Bar- 
rie et al. (42). The lag time for a trilaminate is: 

where h and D are lamina thickness and diffusivity, 
respectively; and K terms are partition coefficients 
with respect to the external phases. The subscripts 1, 
2, and 3 refer to the order of placement of the layers 
with respect to the flux vector. When the partition 
coefficients (solubility coefficients for gases) are 
comparable and any hn/Dn term is much greater 
than the two others, n being 1, 2, or 3, the equation 
reduces to the simple Daynes and Barrer expression, 
hn2/6Dn. In other words, when the diffusional resis- 
tance effectively lies in only one of the strata, the re- 
maining strata are shunted out not only with respect 
to determining steady-state flux but also with re- 
spect to determining the duration of the nonsta- 
tionary state. Numerous other simplifications of Eq. 
44 are possible, depending on the relative magni- 
tudes of the h, D, and K values. It may be noted 
from Eq. 44 that  the outer lamina, 1 and 3, may be 
interchanged without affecting the lag time. How- 
ever, if the middle phase is relocated in the series, 
the lag time will in general be altered. This is in con- 
trast to the steady-state flux which will be indepen- 
dent of phase placement. 

Mem brane-Diffusion Layer Case-One special 
case involving a trilaminate is of particular impor- 
tance. Often membrane permeation is from an aque- 
ous phase, through a nonpolar (lipid) membrane, 
into a second aqueous phase of lesser concentration. 
Fluid dynamics require the generation of essentially 
unstirred solvent layers at  any stationary surface re- 
gardless of stirring conditions (thickness of diffusion 
layers will depend on stirring but not the existence of 
the diffusion layers themselves). Thus, in the cited 
instance, an unstirred aqueous layer will necessarily 
exist at  each membrane surface. From the diffusional 
standpoint, the system is an ABA trilaminate. This 
system was recently analyzed (37, 43, 44). The 
steady-state flux (zero-order boundary conditions) is 
described by: 

(Eq. 45) 

where K is the membrane-water partition coeffi- 
cient, and the subscripts M and A Q  refer to mem- 
brane and water, respectively. The terms hAQ(z, and 
hAQ(zz) represent the individual thickness of the two 
aqueous diffusion layers, and the other terms are as 
previously defined. In most instances, biological or 
otherwise, hMDAQ >> KDMZhAQ and PT will effec- 
tively be KDMlhM. However, for compounds with 
high relative lipid solubilities (partition coefficients) 
and/or for very thin membranes or, in combination 
with either of these two factors, for the unusual sit- 
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uations when DM is of the same magnitude as DAQ, 
PT may in effect become DAQ/ZhAQ. In the first sit- 
uation, the concentration gradient is confined entire- 
ly within the membrane and the flux and lag time 
are membrane controlled. In the latter situations, 
virtually the entire diffusional resistance arises in the 
diffusion layers and diffusion layer control of perme- 
ation is operative8. It may be believed by some that  
increasing “lipophilicity” within a drug family will 
always produce improved absorption of drugs. Equa- 
tion 45 states, on the other hand, that  there is an 
upper limit on partition coefficient which, when ex- 
ceeded, will force the permeation process into diffu- 
sion layer control and, once in diffusion layer con- 
trol, the permeation process is insensitive to  parti- 
tion coefficient. Furthermore, the aqueous diffusivity 
will decrease as  molecular volume is increased, albeit 
gradually, and the aqueous solubility will drop expo- 
nentially with “hydrophobic” derivatization; thus 
overtitration of “lipophilicity” may actually decrease 
drug availability. These effects have been experi- 
mentally demonstrated and quantitated for the alkyl 
p-aminobenzoates permeating silicone rubber mem- 
branes (37). 

Under membrane control and for the zero-order 
condition, the duration of the nonstationary state is 
given by the Daynes and Barrer relationship, i.e., 
~ M ~ I ~ D M .  For ultrathin membranes operating under 
diffusion layer control, the lag time will be (ZhAQ)2/ 
~ D A Q .  When the nonpolar membrane is thick and 
the partition coefficient is sufficiently large to place 
a permeation process in diffusion layer control, the 
lag time has been shown to be (44): 

(Eq. 46) 

or, when the diffusion layers are of identical thick- 
ness: 

(Eq.47) 

where hAQ is the thickness of the individual aqueous 
layer. The appearance of the partition coefficient 
term in this equation indicates that, once diffusion 
layer control has been reached, further increases in 
lipophilicity within a drug series will significantly in- 
crease the time for onset of the steady state. It 
should be kept in mind that partition coefficients 
grow exponentially with alkyl chain length. 

Temperature Effects in Series Barriers-The tem- 
perature dependency of the laminated system can be 
quite complex when the segments offer comparable 
diffusional resistance and the activation energies of 
the diffusion coefficients are very different. By sub- 
stituting Doe-EaIRT terms (see Eq. 35) for D terms 
in Eq. 45, the permeability coefficient for the mem- 
brane-diffusion layer system becomes: 

B T h i s  may seem impossible when U y  >> U A ~ .  However, if L I A Q ~ D , ~  =_ n 
and there are many times n molecules passing through the  mem rane tor 
each molecule passing through the  aqueous region, the  capacity of the  dif- 
fusion layers becomes flux limiting with the  membranes becoming more or 
less a reservoir between. 

Since EaAg for water is about 5 kcal/mole and EaM 
for many polymers will be as much a s  10 or 15 kcal/ 
mole higher, variation of temperature around the 
critical point where the diffusion resistances in each 
layer are equal will lead to a change in diffusional 
mechanism. As temperature is raised, starting 20- 
30” below the critical point and going to  20-30” 
above, the system will pass from membrane control 
to diffusion layer control of flux. A plot of log P uer- 
sus 1/T will be curvilinear. At small values of 1/T 
(high temperatures), the curve will asymptotically 
approach a line with a slope of - E ~ A Q / ~ . ~ R T ,  the dif- 
fusion layer activation line. At low temperatures, the 
slope approached will be - E ~ M / ~ . ~ R T ,  indicating 
membrane control. Thus the temperature dependen- 
cy in principle can provide much information about 
the nature of a laminate and the mechanisms of 
transport. If the diffusional resistance in one layer of 
the composite barrier dominates over the full tem- 
perature span considered, the activation energy will 
be a function of the diffusivity in that  region only 
and can be used to indicate which layer is rate con- 
trolling, providing activation energies are known and 
are different. 

Parallel Pathways:  Influence of Shunts and  
Pores-General Analysis-When two or more inde- 
pendent diffusional pathways are linked in parallel 
in a given diffusional medium, the total diffusional 
current, JT, through the composite is simply the sum 
of the individual currents through the separate 
routes (45). Thus, for a unit of cross-sectional area, 
the flux through independent parallel routes, instan- 
taneous or steady state, may be expressed by: 

J T  = f , J ,  + f 2 J Z +  “‘ + f , J”  (Eq.49) 

where the fi, f2, etc., terms give the fractional areas 
of each route. Therefore, the total flux where inde- 
pendent, parallel pathways exist may be resolved by 
solving Fick’s laws for the operative boundary condi- 
tions of the experiment, adjusting for relative areas 
of the routes, summing over all pathways, and solv- 
ing for the total area involved. For two parallel, lin- 
ear routes directly through a membrane, the solution 
of the flux equations for the zero-order permeation 
condition with a receptor sink is: 

(Eq.50) 

which, as  t - m, approaches the straight line: 
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The steady-state flux through the parallel routes is 
thus: 

(Eq.52) 

In general then, for independent, parallel pathways 
in the steady state: 

(Es. 53) 

where PI, Pz, . . . , P, are the individual permeability 
coefficients for each pathway. 

Solving Eq. 52 for M = 0, one obtains the compos- 
ite lag time: 

= [fP, + f PPP + ..' + f.P,lC,l 

(Eq. 54) 

If one of the two possible routes is impervious, the 
steady-state flux is determined by the fractional area 
of the permeation available pathway times the rate 
of permeation through this channel, and the lag time 
takes the simple Daynes and Barrer form. Mem- 
branes containing pores or channels in a rigid, im- 
penetrable superstructure fall into this class. 

Unlike series barriers, the diffusional profile (M 
versus t )  may provide prima facia evidence for the 
existence of parallel routes. This occurs when the re- 
spective nonstationary-state periods are experimen- 
tally separable. In this situation, considering only 
two routes, the diffusional profile will appear "nor- 
mal" until the lagging pathway is breached by the 
permeant, at which time there will be a surge in flux 
and an approach to a new steady-state line of in- 
creased slope. This exact effect has been demon- 
strated for steroid penetration of human skin (46). 

Mechanical Effects-When dealing with pores or 
channels, two additional mechanical factors must be 
considered. If the pore is either nonlinear or if it is 
not oriented perpendicularly within the diffusional 
field, the effective diffusional path length will exceed 
the actual thickness of the membrane. This situation 
is handled by applying a tortuosity factor, 7. The ef- 
fective thickness of the membrane, H, is computed 
from: 

H = Th (Eq. 55) 

7 having been estimated considering a representative 
sampling of pores. The second mechanical effect be- 
comes significant when the diffusant's radius ap- 
proaches the radius of the pores. This leads to hin- 
dered diffusion (15, 47-49). This phenomenon is 
treated in a subsequent section on diffusion through 
polymers. 

Temperature Effects in Parallel Pathways-The 
temperature dependency for parallel pathways is 
equally complex to that found for series barriers. 
Scheuplein (45) thoroughly reviewed the method of 
analyzing temperature effects for the case of two 
parallel, independent routes. As in previous analyses, 
individual diffusion coefficients may be replaced by 
their DOerEaIRT forms (Eq. 35), and Eq. 52 becomes: 

Like the case of the laminated barrier, when fluxes 

through the parallel routes are of the same magni- 
tude a t  the midpoint of the temperature range of in- 
terest and activation energies for each pathway are 
widely divergent, a curvilinear relationship between 
log [steady-state flux] and reciprocal temperature is 
obtained. The curve is inverted in shape from that 
found for series barriers. A prototype plot may be 
found in Scheuplein's paper (45). 

Scheuplein demonstrated the temperature effects 
discussed for the permeation of human skin by tri- 
tiated water. He provided strong evidence for the ex- 
istence of pores through the stratum corneum con- 
tinuum. Activation energies found for each route are 
5 kcal for aqueous filled pores, an expectable value 
based on free diffusion in liquid medium, and 19 
kcal for the stratum corneum matrix. Scheuplein's 
analysis thus shows that the assessment of tempera- 
ture effects can be a powerful tool in characterizing a 
membrane and formulating an appropriate model. 

Dispersed Phases and Barrier Property- 
General Considerations-The presence of dispersed 
particles or bodies in the diffusional matrix is anoth- 
er barrier complexity commonly found in pharma- 
ceutical systems. Higuchi and Higuchi (50) previous- 
ly reviewed the problems associated with this form of 
heterogeneity, indicating that the theory is applica- 
ble to the design of protective ointments, to drug re- 
lease from semisolid dispersed systems such as solid- 
ified emulsions and suspensions (creams and oint- 
ments), and to the passage of drugs through biologi- 
cal barriers. Characterization of a membrane con- 
taining a dispersed phase necessarily requires full 
characterization of the dispersed phase itself, includ- 
ing its spatial distribution, its size distribution, its 
orientation, its shape, its interactions with the dif- 
fusing species, and its overall concentration or rela- 
tive volume. The following analyses will only consid- 
er situations where dispersions are uniform within 
the barrier continuum. Furthermore, the particles 
will be assumed to be randomly oriented and, in the 
case of emulsions, spherical in shape. In combina- 
tion, these features lead to a diffusional field that is 
isotropic on the macroscopic level. More specific 
considerations on particle geometry and nonuniform 
particle distribution may be found in the Higuchi and 
Higuchi (50) review and in Ref. 51. 

Influence of Inert Fillers-The simplest case of fill- 
er influence arises when the dispersed phase is dif- 
fusionally inactive. Such fillers (here the term is 
used generally, considering the filler as either solid, 
liquid, or gas) are referred to as being inert. The 
inert filler influences the time course of the diffusion- 
al profile in basically two ways: 

1. It forces the diffusant to stream around the fill- 
er, thereby lengthening the average diffusional path. 

2. It occupies volume which is excluded as a dif- 
fusional path. 

As in the case of nonlinear pores, the average path 
length is adjusted with a tortuosity factor, 7 (see Eq. 
55). Furthermore, the relative volumes of filler and 
continuum may be computed in terms of their vol- 
ume fractions, 42 and 41, respectively. Obviously, $1 
= 1 - $2. Recognizing that the relative cross-sectional 
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area of the continuum phase is exactly equal to its 
relative volume (randomness of dispersion is as- 
sumed), the steady-state flux equation (zero-order 
process with a receptor sink) is readily formulated; 
1.e.: 

The lag time for the zero-order situation as defined is 
unaffected by the filler volume fraction but is in- 
fluenced by the increased diffusional path length and 
is : 

h2r2 H2 t , = -  = - 
6 D  6 D  

Influence of Adsorptive Fillers-When a filler par- 
ticipates in the diffusion process in a more direct 
manner, i.e., by sorption of the permeant as it cross- 
es the barrier, it is designated as being active. Sorp- 
tion here implies either adsorption or absorption. In 
general, adsorptive influences are less complicated 
and more readily quantitated. When the adsorption 
follows Langmuir's isotherm, two distinct dependen- 
cies have been formulated: one where the amount 
adsorbed is directly dependent on concentration and 
a second representing the plateau of the isotherm 
where a fixed amount of permeant is adsorbed per 
unit of filler. The former is designated as the Case I 
mechanism, and the latter is Case 11. The Case I re- 
lationship, originally derived by Finger et al. (52) ,  
was recently reexamined by Flynn and Roseman 
(53 ) .  For the standard zero-order permeation pro- 
cess, the steady-state flux and lag time equations 
are: 

( Eq. 59) 

and: 

(Es. 60) HL t ,  = - (1 + 2@*) 6D 
where z is the adsorptive constant. The steady-state 
flux equation is identical to Eq. 57, indicating that 
the steady-state flux is unaffected by the filler short 
of its influences on effective area for diffusion and 
effective path length. The lag time is directly related 
to square of tortuosity, to filler volume fraction, and 
to filler adsorptive capacity as measured by 2. For a 
given Case I filler, a plot of lag time divided by Hz 
against VZ will have a slope of 1 /6D and an intercept 
of z /6D,  affording in one plot estimates of both D 
and z. These relationships have been shown to be 
closely approximated for the permeation of silicone 
rubber membranes containing a silica filler by ethyl 
p-aminobenzoate (53 ,54 ) .  

The Case I1 adsorptive mechanism was derived by 
Higuchi and Higuchi (50 ) .  The steady-state equation 
is the same as for the Case I mechanism. The lag 
time, on the other hand, .is considerably different 
from Case I and is given by: 

(Eq. 61) 

where 2" is the maximum (saturation) adsorptive 

capacity of the filler. The Case I and Case I1 mecha- 
nisms may be differentiated by the donor phase con- 
centration dependency in Case 11. When the diffu- 
sant is irreversibly bound (Case 11) to  the adsorbent 
as may occur in chemisorption, breakthrough of the 
barrier will be dramatically lengthened at  low ap- 
plied phase concentrations. Higuchi and Higuchi 
(50 )  pointed out that the lag time equation for Case 
11 is only approximate in that it reduces to HZ140 
.and not to P / 6 D  as 242 approaches zero. 

Absorptive, Permeable Fillers-Situations where 
the filler particles themselves are permeable (i.e., an 
emulsion) are exceedingly complex and have proven 
refractory to exact analysis. Such processes involve 
absorption of diffusant by the filler. It is intuitive 
that when the filler is permeable a significant flow of 
material will occur within the filler, and this will af- 
fect both transient and steady-state processes. Higu- 
chi and Higuchi (50) derived the following equation 
for the effective permeability coefficient, PT, in the 
steady state, assuming spherical filler particles: 

PI = 

where PI  and PZ are the individual permeabilities for 
the planar case, and 4 2  is the dispersed phase vol- 
ume fraction. The term (1 - 42) is the continuum 
volume fraction, and G is a constant which has a 
value of about 0.8 based on dielectric constant data 
for powders and suspensions (Higuchi and Higuchi 
estimated that G may range down to 0.4 in some in- 
stances). 

Time Variable Boundaries-General Consider- 
ations-To this point, transport situations of gradu- 
ally increasing complexity have been discussed. Fur- 
ther escalation of complexity arises when the bar- 
rier's dimensions and/or diffusion properties change 
in the course of an experimental run. Some systems 
in which boundaries advance or recede with time, so- 
called moving boundaries, lend themselves to quan- 
titative analysis. Such systems are exemplified by 
the following processes: (a) drug release from inert 
matrixes (55 ) ,  (b )  freeze drying (the receding ice 
layer) ( 5 6 ) ,  (c) film-forming chemical reactions such 
as tarnishing of metals (57 ) ,  and (d)  formation of a 
calcium fluoride layer on tooth enamel (hydroxyapa- 
tite) ( 5 8 ) .  

The first two examples require that the diffusant 
be transported through a region whose dimension in 
the flux vector is lengthening due to depletion of dif- 
fusant. The latter examples differ in that the diffu- 
sant travels through a continuously expanding region 
(boundary) formed by a chemical reaction of the dif- 
fusant and the substrate. With the exception of sur- 
face oxidations, there appear to be few examples of 
these processes outside the pharmaceutical field. 

Release from Inert Matrixes-From a pharmaceu- 
tical point of view, drug release from inert matrixes 
represents the most studied system involving moving 
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boundaries. Mathematical equations have been de- 
rived for several different physical situations. With a 
knowledge of the mechanism of drug release and the 
appropriate parameters that  alter the release pro- 
cess, the researcher is in a better position to design 
systems to meet a given set of predetermined re- 
quirements. 

The rate of release of drugs suspended in a sta- 
tionary matrix (semisolid ointment) was presented 
by Higuchi (59). Figure 3 depicts the physical model 
for a planar system. With the assumptions that: (a) 
a quasisteady state exists, (b )  the drug particles are 
small compared to the average distance of diffusion, 
and (c) perfect sink conditions exist in the ezternal 
media, the following equations were derived. The 
change in amount released per unit area, dM, corre- 
sponding to a change in the thickness of the depleted 
zone, dh, is: 

0%. 63) 

where W is the total amount of drug, soluble and un- 
dissolved in a unit volume of the matrix, and C, is 
the saturation concentration of the drug within the 
matrix. According to Fick’s law, dM is also equal to: 

d M  = G d t  (&. 64) 

where D, is the diffusion coefficient in the matrix 
phase. Equating Eqs. 63 and 64, integrating, and solv- 
ing for h yield: 

C 
2 d M  = W d h - “ d h  

h 

This can be substituted into the integrated form of 
Eq. 63 to obtain: 

M = [C,D,(2W -C,)t]’/2 (Eq.66) 

and when W >> C,: 

M = (2C,D6 Wt)”’ (Eq.67) 

In other words, the amount released is a linear func- 
tion of the square root of time. 

The analogous equation for the release of a single 
drug from a granular matrix is (55): 

I 1 2  

M = DOC.: [2W - 4 J t )  ( Eq. 68 ) 

where t is the porosity of the matrix, T is tortuosity, 
C, is the solubility of drug in the release medium, and 
D, is the diffusivity in the release medium. In this 
model, the drug is dissolved by a leaching action of 
the solvent which enters the matrix through con 
necting capillaries. The corresponding equations, 
when W >> Car for spherical pellets (55) and cylindri- 
cal pellets of infinite length (60) are, respectively: 

( 

and: 

(Eq. 70) 

+ 
x = h  x = o  

Figure 3-Physical model for the release of drug suspended in  
an ointment base under perfect sink conditions (59). 

where F is the fraction of the total amount in the 
pellet released, a0 is the radius of the pellet, and a is 
the radius of the matrix which is unextracted at  
time, t .  When the initial porosity of the matrix is 
small or the fraction of the matrix volume occupied 
by the solute is relatively large, t may be represented 
by Wlp,  where p is the density of the drug. In this 
situation, Eq. 68 reduces to: 

and, hence, a linear dependency of M upon W is ex- 
pected. It should also be noted that the fraction of 
drug released in a given time for the spherical or cy- 
lindrical cases is not appreciably different from the 
planar case until about 50% of the total amount is 
released (55,61). 

The following equation has been presented (62) for 
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Figure 4-Physical model for the release of a mixture of two 
noninteracting drugs from an inert matrix under perfect sink 
conditions (73). Key: a, conditions existing at t = 0; b, condi- 
tions existing at finite time (t); and c, illustration of the con- 
centration gradients in regions 1 and 2. 

the situation where equilibrium drug binding to the 
matrix phase occurs but solute does not diffuse 
through the matrix phase: 

where K is the equilibrium partition coefficient, i .e. ,  
the drug concentration in solution in the matrix di- 
vided by the drug concentration in solution. 

The applicability of Eq. 68 to  the release of drugs 
from an inert tablet matrix of polyethylene was test- 
ed by Desai et al. (63) under controlled experimental 
conditions. As predicted by theory, a linear relation- 
ship was found experimentally when M was plotted 
against t 1 I 2  for the release of sodium salicylate. The 
effect of W and C, on the release of drug was in 
qualitative agreement with theory. However, indirect 
effects of these two variables along with those of ad- 
ditives and leaching solvent on the porosity and tor- 
tuosity terms were noted. Subsequent studies (64) 
demonstrated that surface-active agents increase the 
rate of release of solutes by increasing the porosity of 
the matrix (due to the wetting of channels). When 

the constants in Eq. 68 were independently deter- 
mined, quantitative agreement of data and theory 
was found. Porosity, however, was not a direct func- 
tion of the percent of drug in the matrix, and a di- 
rect dependence of M upon W as suggested by Eq. 
71 was not observed. Furthermore, the choice of the 
inert matrix strongly influences the observed M ver- 
sus t1 I2 plots. Polyvinyl chloride releases sodium sa- 
licylate four t o  six times faster than polyethylene, 
and M versus t1/2 plots are sigmoidal (65). This aty- 
pical behavior was attributed to  the slow removal of 
air from the tablet. 

The release of drugs from wax matrixes (66), 
methyl acrylate-methyl methacrylate copolymer ma- 
trixes (67, 68), and hydroxypropyl methylcellulose 
(69, 70) have also been shown to follow Eq. 68. How- 
ever, using a sulfanilamide-wax system, calculated 
tortuosity values were extremely high ( 7  > 1000) and 
a more complex model was presented where the per- 
meability characteristics of the drug in the matrix 
were considered using the Bruggeman equation (71).  
A receding boundary model has also been proposed 
to describe the dissolution rates of polyvinylpyrroli- 
done-sulfathiazole ceprecipitates from tablets (72).  

The physical model for the simultaneous release of 
two noninteracting drugs from an  inert wax matrix 
was developed by Singh et al. (73). The equations 
describing the release of each of the two components 
are based on the physical model given in Fig. 4. The 
slower moving component’s release follows the basic 
relationship given by Eq. 68. The faster component’s 
release, on the other hand, is described by: 

L J 

The subscripts A and B refer to the different drug 
species, the subscripts 1 and 2 refer to the regions 
under consideration, the k values are the slopes of 
the corresponding M versus t1’2 plots, and C B  is the 
concentration of drug, B, a t  the h boundary. Singh et 
al. (74) also derived equations for the case where the 
two drugs interact to form a complex. 

The release of drug from a homogeneous matrix of 
planar geometry is given by Eq. 66. In  this case, the 
drug dissolves directly in the matrix phase and dif- 
fuses through this isotropic environment to the sur- 
rounding medium. When the matrix is heterogene- 
ous, that  is, when i t  contains an  inert filler, ~$1 (the 
continuum volume fraction) and 7 must be included. 
Equations 69 and 70 are applicable for spherical and 
cylindrical geometries for this case as long as W >> 
C,.  Note that Cs, D,, and 41 now replace C,, D,, and 
E ,  respectively. When W approaches Cs, the amount of 
diffusing component dissolved in the partly extracted 
matrix must also be considered. The general case re- 
lating a (radius of matrix that is unextracted) to time 
for the spherical case was derived by Higuchi (55): 

(1-u) [ 1 + 2  (33 -(3-4cu) (;y - 

(:) (:>= 6DsCs’1t (Eq. 74) 
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where C ,  = (Y W. The fraction of drug remaining (F’) 
at t is: 

As (Y approaches unity, Eqs. 74 and 75 lose their 
validity because the quasisteady state necessitates 
the condition W >> C,. 

Boundary Layers and Matrix Release-In the fore- 
going derivations involving moving boundaries, it is 
implicit that the release process is dependent on the 
properties of the matrix only and is not significantly 
affected by the external medium (sink) collecting the 
drug. Due to the presence of solvent boundary layers 
at surfaces, this may not always be true. Roseman 
and Higuchi (60) considered the more general system 
where the solvent (aqueous) diffusion layer is placed 
in series with the receding drug boundary, much as 
in the membrane-diffusion layer laminate situation. 
The expressions relating M to t when W >> C ,  are: 

M = W h  (Eq. 76) 

and: 
2Dd,Xhah]  = 2D541CV T W  (h. 77) 

where, again, K is the matrix-solvent partition coef- 
ficient, and ha is the thickness of the solvent diffusion 
layer. The thickness of the zone of depletion ( h )  is 
related to time by Eq. 77 and increases as a function 
of time as shown in Fig. 5 for the release of medroxy- 
progesterone acetate from a silicone rubber cylin- 
der. These equations do not predict a linear depen- 
dence of M on t112 at all times unless the condition h 
>> (BDs@lhaK/Da,) is fulfilled. When this occurs, 
Eqs. 76 and 77 combine to yield Eq. 67, which pre- 
dicts a linear relationshipg. 

The applicability of Eqs. 76 and 77 have been test- 
ed by studies on the release of progesterone-type ste- 
roids from a silicone polymer (61). Nonlinearity of M 
versus t112 plots was found during early stages of the 
release process. The duration of the nonlinear region 
was dependent upon the particular steroid studied. 
With the ratio D,/D, presumed to be relatively con- 
stant for a class of structurally similar compounds in 
a given matrix and with h a  fixed by the experimen- 
tal design, the nature of the M versus t112 plots are 
dependent upon the magnitude of K,  which is, in 
turn, strongly dependent upon molecular structure. 
Further support for this model of drug release can be 
abstracted from the data of Haleblian et al. (75) for 
the release of chlormadinone acetate from a silicone 
polymer. When M versus t1I2 plots were made for 
five different concentrations of micronized drug within 
the matrix, nonlinearity was observed a t  early times. 
In this study, the higher drug loads required a longer 
time to reach the linear region of the M versus 
t1/2 curve. This finding is consistent with the notion 
that it requires a longer time at  higher drug levels for 
h to be sufficiently large so that the release process is 
solely matrix controlled, as given by Eq. 67. 

TD, 

Figure &Cross-sectional views of silicone rubber cylinders 
(60). Key: A ,  placebo; B, drug-filled, initial; C,  1 week; D,  
2 weeks; E,  3 weeks; and F, 4 weeks. 

INFLUENCE OF SOME SPECIFIC PERMEANT AND 
BARRIER PROPERTIES ON MASS TRANSPORT 

Diffusant Solubility as a Flux-Limiting Factor 
-General Solubility Considerations-Regardless of 
flux mechanism, it is clear upon examination of all of 
the permeability expressions that flux is proportional 
to the concentration differential across the total bar- 
rier. This is maximized in a given system for a given 
permeant when the penetrating agent is present in 
the applied phase in a saturated state. There are 
many situations of pharmaceutical interest where 
this solubility limitation plays a critical role in the 
transport process. For example, the rate of dissolu- 
tion of a solid in a given solvent is dependent on its 
solubility, the barrier for dissolution in most cases 
being the solvent diffusion layer at  the solid’s sur- 
face. The absorption of slightly soluble drugs from 
suspensions or from solid dosage forms, the passage 
of pure gases and vapors across membranes, and the 
permeation of pure solvents through synthetic con- 
tainers also involve saturation of the barrier interface 
in contact with the penetrant. Even in uptake exper- 
iments and other situations where saturation is un- 
attained, the solubility of the diffusant is important 
as a measure of the maximum driving force for 
transport. Furthermore, since studies concerned with 
determinations of diffusivity or release from ma- 
trixes, etc., often involve permeability from saturat- 
ed phases, it is necessary to know the solubility to 
calculate diffusivity or otherwise to quantitate the 
processes. 

A review of solubility theory is beyond the scope of 
this paper; the reader may want to consult Refs. 
76-80 for information along these lines. However, 
several generalizations regarding chemical structure 
and its influence on solubility are particularly rele- 
vant and will be considered. 

Most systematic studies on the solubilities of or- 
ganic nonelectrolytes have been directed to congen- 
eric solubilities in a given solvent (particularly solu- 
bilities of homologs) or to the solubilities of a single ’In Eq. 6 7 , h  and rare unity. 
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compound in a series of solvents or binary solvent 
mixtures. Some general observations follow. 

1. For homologous series, solubilities decrease ex- 
ponentially in most solvents as chain length in- 
creases (79, 80). Negative slopes of log (solubility) 
versus chain length plots increase as polarity of sol- 
vent increases. In hydrocarbons, the slope may be 
close to zero and it ranges between -0.5 and -0.7 
for water. In other words, somewhere between a 
three- to fivefold decrease in solubility per methylene 
addition is experienced in aqueous systems. 

2. For crystalline homologs, odd-even alterations 
in solubility are evident (79, 81). These are concur- 
rent with generally decreasing solubility and may be 
masked in the very large solubility decreases found 
in aqueous systems. These arise from energetic dif- 
ferences in crystal packing of odd and even chains 
which lead to odd-even alterations in heats of fusion. 
Moreover, the behavior of the first few homologs in a 
series may be aberrant with regard to both slope and 
odd-even alterations since the nonchain portion of 
the molecule can assert a disproportionate influence 
on crystal structure in this instance (81,82). 

3. Solubilities of nonpolar organic compounds are 
directly influenced by their molecular “hydrophobic” 
surface area (83). For example, neopentane is more 
water soluble than n-pentane because it is a more 
globular molecule offering less total surface to the 
aqueous environment. The lipid-water partition 
coefficients of organic homologs and analogs increase 
exponentially with “hydrophobic” surface area be- 
cause the affinity for water decreases as the mole- 
cules are made more “hydrophobic” and not because 
the absolute lipid affinity is raised. 

The emphasis here is on water because water is 
the principal component of the fluids found in 
the GI tract and elsewhere in the body as well as the 
solvent of choice for most liquid pharmaceuticals in- 
tended for systemic effects. While most of the com- 
ments are made with specific reference to homologs, 
the properties of analogs would tend to follow the 
same patterns, albeit less regularly or rigorously. 
What the solubility phenomena mean with respect to 
transport was summarized by Flynn and Yalkowsky 
(37). They combined the zero-order flux equation for 
the membrane-diffusion layer system with the fol- 
lowing homolog relationships: 

log S ,  = log S,, - 5n (Eq. 78) 

and : 

log K,, =. log K,, + an (Eq.79) 

where S, and K ,  are the solubility and partition 
coefficient, respectively, of the homolog of chain 
length n; and SO and KO are the solubility and parti- 
tion coefficient, respectively, of the reference homolog 
of Ghain length equal to zero; the latter are often hypo- 
thetical values found by taking the Y intercept of the 
log (solubility) uersus chain length plot for log SO 
and the Y intercept of the log (partition coefficient) 
uersus chain length plot for log KO. Using this solu- 
bility and partitioning reference point, the steady- 

state flux from saturated solutions for the compound 
of chain length n in the standard zero-order process 
may be expressed by: 

log J ,  = log So + log K O  + (a - d)n - log [ % KO 10”” + ““1 
D .%I 

(Eq. 80) 

Often ~ M / D M  >> ( ~ A Q / D A Q ) K ~ I O * ~  for small values 
of n, in which case the steady-state flux is given by: 

log J ,  = log ~ + (a- 6)n (Eq. 81 ) 
h M 

This is the membrane control situation and, where 
operative, the relative flux of homologs from saturat- 
ed solutions will depend almost entirely on the rela- 
tive values of 7r and 6. Generally, 6 > ir, particularly 
for biological systems where x is only about 0.2-0.3, 
and there will be a decreasing flux with increasing 
chain length for saturated conditions (84). When n 

steady-state flux obtained will be related to solubili- 
ty by: 

gets large, ( h A Q / D A Q ) & l O ” “  >> h M / D M  and the 

(Eq.82) 

which, neglecting small changes in aqueous diffusivi- 
ty of the compounds, indicates that the flux will 
drop exponentially and in exact parallel to the solu- 
bility. Thus, based on literature values of 6, which 
range from 0.5 to 0.7, a three- to fivefold decrease in 
steady-state rate of penetration per unit increase in 
n is experienced. From the standpoint of relative bi- 
ological activity, a fourfold decrease in rate of supply 
of drug to the biological “receptor” will often over- 
whelm other activity-determining factors and the bi- 
ological activity will plunge precipitously once diffu- 
sion layer control is attained, assuming, of course, 
application in saturated aqueous solutions. The lat- 
ter assumption is eventually good in all cases be- 
cause the exponentially decreasing solubility line will 
of necessity cross any fixed (initial) concentration 
line at  some value of n. Thus, to generalize, there is 
a practical limit for the adjustment of “hydrophobic- 
ity” of homologs and analogs past which the absorp- 
tion behavior is so seriously affected as to preclude 
biological activity. I t  is implicit in this generalization 
that the membrane-diffusion layer system serves as 
the model of minimum complexity for the absorption 
of drugs. 

Solubility of Gases-The solubility of pure nonpo- 
lar gases and vapors in amorphous nonpolar poly- 
mers can generally be described by any of several re- 
lationships of the form: 

l o g s  = A E + B  (Eq. 8 3 )  

where A and B are constants that  depend upon the 
temperature, the gas, and the polymer, respectively. 
For mixtures of gases, the solubility is usually re- 
placed by the solubility constant, defined as the 
ratio of the concentration in the polymer phase to 
that in the gas phase. The heats of solution of gases 
and vapors are exothermal and tend to increase with 
solute size and eventually level off for large solutes. 
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In most cases, heats of solution of gases in nonpolar 
polymers and in nonpolar liquids can be approxi- 
mated by: 

AHs = v,c$,-$2)%z (Es. 84) 
where V1 is the partial molal volume of the solute, $1 
and $2 are the solubility parameters of the solute 
and either the solvent or polymer, and a2 is the vol- 
ume fraction of solvent or amorphous polymer. Both 
volumes and solubility parameters for most common 
polymers and solutes are known (85, -86) or can be es- 
timated by empirical calculations (82, 87). There- 
fore, for poorly soluble substances, where a2 is ap- 
proximately unity, it is possible to estimate the 
heats of solution. For solid dissolution, the heat of 
solution is dominated by the heat of melting and is 
thus usually endothermic. 

Special Case: Dissolution of Solids-The disso- 
lution of a solid in a fluid medium is described by 
the Noyes-Whitney equation (88): 

dM - = R A Q  A (S- C d  
dt  (Eq. 85) 

where C B  is the bulk concentration, S is the solubili- 
ty, M is the weight, A is the surface area of the so- 
lute, VB is the volume of the solution, and RAQ is the 
resistance of the diffusion layer as described earlier. 
If, as in the beginning of a dissolution experiment, 
C B  << S, Eq. 85 becomes: 

dM A dt = RAQ S (Eq. 86) 

which describes the initial rate of dissolution. The 
role of aqueous solubility in determining the initial 
dissolution rates of about 50 drugs and drug-like 
substances from uniform surface area pellets was il- 
lustrated by Hamlin et al. (89). Their data show ex- 
cellent agreement with Eq. 86, the linearity extend- 
ing over five orders of magnitude. 

The solubility of a substrate and, thus, its dissolu- 
tion rate can be increased significantly in several 
ways. The addition of surfactants, complexing 
agents, and solvents and the adjustment of pH can 
have profound effects on dissolution rates of drugs 
(89). Complete characterization of such systems 
must, of course, account for the diffusivity of any 
micellized or complexed drug and for changes in vis- 
cosity that accompany the alteration of solvent com- 
position. 

Factors Determining Partition Coefficients- 
The permeability of a membrane separating two 
aqueous phases is proportional to the product of the 
membrane-water partition coefficient and mem- 
brane diffusion coefficient of the solute when the 
membrane provides the sole source of diffusional re- 
sistance. Thus, in certain instances, the role of parti- 
tioning in determining permeability is similar to the 
role of absolute aqueous solubility already discussed. 

The relationships between partitioning behavior 
and chemical structure were thoroughly reviewed 
(90-92). Although the discussion of Leo et al. (92) is 
aimed primarily at octanol-water partitioning, it 
provides regression equations which can be used to 

convert octanol-water data to ether-water partition 
coefficients, chloroform-water partition coefficients, 
etc. Presumably, if enough data were available for 
biological systems, it would be possible to obtain 
equations from which membrane-water partition 
coefficients could be calculated. 

In the structural approach to partitioning, a given 
functional group or other structural component is 
presumed to have a constant input to the overall 
partition coefficient of the given whole molecule. By 
using a reference derivative with a known partition 
coefficient in the partitioning system of choice, the 
log (partition coefficients) of a homolog or analog 
can be calculated by simply summing the group con- 
tributions (T values) of the structural modifications 
with respect to the reference compound and adding 
these to the log [partition coefficient] of the refer- 
ence. Fortunately, there is a great parallelism seen 
for these specific structural effects among differing 
partitioning systems. This usually makes it possible 
to assess, at  least qualitatively, the effect a given 
moiety will exert on one partitioning system if its in- 
fluence on another is known. This is particularly 
helpful for analyzing data from biological systems, 
where partition coefficients are often unattainable, 
because a convenient in vitro. reference partitioning 
system may be used to correlate the data and predict 
optimal properties. 

The permeability of many polymers to gases is 
often more a function of the relative concentration of 
the gases than their diffusivities, according to Barrer 
and Chi0 (93). For example, the diffusivity of helium 
is almost nine times greater than that of xenon in 
silicone rubber; yet the permeability of the latter is 
over 10 times the permeability of helium because of 
its 100-fold greater solubility. In the case of gases, the 
distribution function is referred to as the solubility 
coefficient. 

The role of substrate partition coefficients in de- 
termining flux is conveniently illustrated by studies 
on alkyl homologs. The diffusivities of the members 
of most homologous series in water or artificial mem- 
branes generally do not change by more than a slight 
factor (2 or 3) as the series is ascended over a 10-unit 
increase in chain length. A 10-unit variation in chain 
length may be taken as the rough limits of practical 
chain length manipulation (see section on diffusivity 
for further conditional factors). However, by examin- 
ing Eq. 79, it is obvious that over the same 10 meth- 
ylene unit range, partition coefficients will increase 
by from 21° (-1000) to 41° (-1,000,000). These 
numbers correspond, respectively, to ?r values for a 
methylene unit of 0.3, which is commonly found for 
biological membranes (84), and 0.6, which was re- 
ported by Davis et al. (83) for hexane and similar 
apolar solvents. Obviously, changes in partitioning 
dominate diffusivity effects. When measured from 
solutions of equivalent concentration, the steady- 
state flux of the homologs will grow essentially as 
the partition coefficient grows as long as the mem- 
brane is the controlling barrier. However, for all 
membranes that are “lipoid” in character, a point is 
reached as the partition coefficient is made larger 
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where the system crosses over to diffusion layer con- 
trol. As shown by Stehle and Higuchi (43), a plateau 
in flux is reached at  this point for these conditions 
and flux remains constant upon further alkyl chain 
length extension, unless, of course, the solubility 
limitation is also attained, in which case the flux 
falls exponentially (see previous section). 

Garrett and Chemburkar (94) and Flynn and Yal- 
kowsky (37) showed that under membrane control of 
flux the permeability of alkyl p-aminobenzoates 
through a silicone rubber membrane parallels the 
partition coefficients of these compounds between 
water and a nonpolar solvent. Similarly, Nasim et al. 
(95) showed that the permeabilities of a variety of 
substances through polyethylene is proportional to 
their hexane-water partition coefficients. Other 
workers correlated permeability of various nonpolar 
membranes with different oil-water partition coeffi- 
cients. 

Effective Concentrations-Factors that alter 
compound solubility such as micelle formation, com- 
plex formation, and cosolvents also affect the per- 
meation processes by changing the thermodynamic 
activity of the penetrating substance in either the 
applied phase or the barrier phases. Since the parti- 
tion coefficient actually is a ratio of the activity coef- 
ficients in the various phases, such effects are direct- 
ly reflected in measured (or effective) partitioning 
constants. The influence of complexation, micelliza- 
tion, e tc . ,  on permeability of lipid (partitioning) 
membranes lacks predictability since these processes 
are complicated in multiphasic systems because all 
interphase equilibria are simultaneously affected. 

Possibly the simplest and best characterized equi- 
libria with respect to permeation of “lipid” mem- 
branes are dissociations cf weak acids and weak 
bases. Generally, ionized species formed in such 
equilibria do not have favorable free energies for 
transfer to lipid phases and, for all intents and pur- 
poses, only nonionized species partition. Thus, the 
net membrane gradient in membrane control of flux 
is determined solely by the fraction of unionized 
drug (diffusant) in the applied phase. In such cases 
the pH profile for drug permeation is sensitive to the 
pH profile of the nonionized specieslO. This has been 
called the pH-partition hypothesis by some authors. 
The literature is replete with examples illustrating 
the influence of pH on the transport of both acidic 
and basic species. 

The influence of cosolvents on membrane trans- 
port is interesting and of practical importance in the 
field of topical dosage forms. Garrett and Chem- 
burkar (94) and Yalkowsky and Flynnll studied the 
effect of regularly altering aqueous solvent composi- 
tion on the transport of several drugs across silicone 
rubber membranes. For the systems studied, it can 
be shown that the partition coefficient of a drug be- 
tween the membrane and any solvent mixture is pro- 
portional to the reciprocal of the drug solubility in 

10 The permeation profile is superimposable on the pH profile 01 the non- 

l1 In preparation. 
ionized species only when the partition coefficient is equal to  one. 

the solvent system. Furthermore, a plot of log (recip- 
rocal solubility) uersus log (permeability) is linear 
and has a slope of unity. This indicates that in the 
systems studied the permeability is directly propor- 
tional to the partition coefficient and that the sys- 
tems are under membrane control of flux. If the per- 
meant is sufficiently nonpolar to produce diffusion 
layer control, the permeability would be independent 
of solvent composition. 

Self-association of a diffusant into micelles in- 
creases the total apparent solubility of a substrate in 
the aqueous phase and decreases its apparent parti- 
tion coefficient, but it does not significantly alter the 
concentration of free drug or its true partition coeffi- 
cient. Therefore, if the micelle cannot pass through 
the flux-controlling membrane, its effect on perme- 
ability will be small. However, if the dominant resis- 
tance is the aqueous diffusion layer, the micelle can 
play a significant role in the transport process (96- 
98). 

The influence of micelles where the association 
colloid-forming agent and the diffusant are not the 
same is a very different matter. When the diffusant 
has no affinity for the dicelle, no appreciable effects 
will be noted. As the micellar affinity increases, the 
fraction of unassociated diffusing species will be de- 
pleted and the flux will drop proportionally. In the 
extreme, there may be so little free drug that trans- 
port becomes limited by the rate of diffusion of the 
micelle or the energetics of removing the diffusant 
from the micelle once a t  the partitioning surface. 
The latter interfacial barrier mechanism appears to 
be operative in the transport of cholesterol and relat- 
ed sterols in the presence of bile acid-lecithin mi- 
celles into and out of a hexadecane phase (99). Such 
processes are orders of magnitude slower than free 
diffusion. 

Complex formation, like micelle formation, alters 
the apparent solubility and partition coefficient of a 
substance. If complexation only occurs in the aque- 
ous phase, complexation will influence transport in a 
manner analogous to micellization. However, if the 
complex is also stable in the membrane, transport of 
the complexed form effectively results in a parallel 
pathway for transport. A complete description must 
include the stability constant for the complex as well 
as the diffusivity of free and complexed drug in each 
phase and the partition coefficient of the drug and 
complex between phases. The relative magnitudes of 
these values will determine whether permeability is 
increased, decreased, or unchanged by complexation. 
These rather interesting possibilities were effectively 
separated from one another b y  Nakano and Pate1 
(loo), who studied the effects of alkylamides on the 
passage of p-nitrophenol across silicone rubber mem- 
branes. They found that dimethylacetamide pro- 
duced no effect on the apparent permeability but 
that dimethylpropamide, diethylacetamide, and di- 
ethylpropamide increased permeability by l l ,  29, and 
9570, respectively. This point was further illustrated 
by Bates et al. (101), who showed that certain caf- 
feine-drug complexes, which have lower partition 
coefficients than the respective free drugs, reduced 
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the apparent permeability of the drugs. The appar- 
ent permeability of caffeine, on the other hand, was 
increased as a result of formed complexes that were 
more hydrophobic than free caffeine. 

Factors Affecting Diffusivity-General Re- 
rnarks-In grossly generalized terms, diffusivity is 
dependent on the state of matter of the diffusing me- 
dium, i.e., gas, liquid, or solid. In all theories relating 
diffusion to the state of matter, it is implicit that no 
two molecules or atoms may occupy the same point 
in space at the same time and, thus, diffusion must 
always be through void spaces in the matter under 
consideration. In gaseous media, the void space, or 
free volume as it is often referred to, is thousands of 
times greater than the physical space occupied by 
the molecules themselves and the mean free path be- 
tween molecular collisions is large, leading to large 
diffusivities. Typical diffusivities in air are on the 
order of 0.05-1 cm2/sec at  ambient temperature. 
Thus, the average gas molecule from a large popula- 
tion will cross a centimeter thick barrier of air in 
from 1 to 20 sec. In condensed fluid phases, the free 
volume is but a small fraction of that found in the 
gaseous state; mean free paths and, thus, diffusivi- 
ties are correspondingly smaller. For example, in liq- 
uid water the diffusivities of 10-5-10-6 cm2/sec are 
common and it would take a molecule somewhere 
between 1 and 10 years to cross a l-cm thick, un- 
stirred layer12. Solidified polymers generally have 
even less free volume which, in this case, is depen- 
dent on the polymer’s density and degree of crystal- 
linity. Diffusivities in polymers are orders of magni- 
tude less than in the fluid state. For all intents and 
purposes, metallic and ionic crystalline solids are 
without free volume and are virtually impervious to 
small molecules at  ordinary temperatures. However, 
small gas molecules (hydrogen, helium, etc.), which 
can “squeeze” through the atoms in the crystalline 
array, do often penetrate with detectable velocities 
at ordinary temperature. 

In more specific terms, the diffusivity of a sub- 
stance in a particular medium is a complex phe- 
nomenological parameter, which is dependent upon 
the properties and the degree of interaction between 
the diffusant and the diffusion medium. The diffu- 
sion coefficient, D, is related to the frictional resis- 
tance, f, that the diffusing particle experiences in 
moving through a medium by (26): 

(Eq. 87) 
RT 
f D = -  

The primary effect of structural modification on dif- 
fusivity is the alteration of the frictional resistance. 
However, since structural changes are frequently as- 
sociated with changes in molecular interaction, a 
secondary effect is to alter the effective concentra- 
tion gradient, AC. The sensitivity of AC and f to 
molecular modification depends upon the character- 
istics of both diffusant and barrier. Unfortunately, it 
is not possible at this time to present a single rela- 
tionship describing diffusivity in terms of other 

known or measurable parameters. To provide a 
meaningful discussion of diffusivity, this section will 
be subdivided according to the nature (homogeneity, 
fluidity, and polarity) of the diffusion medium. Since 
all possible barriers cannot be covered, a variety of 
representative systems was chosen so that reasonable 
extrapolations can be made to media that are not 
specifically discussed. 

Diffusivity in Homogeneous Liquids-In a homo- 
geneous liquid, the frictional resistance that a parti- 
cle experiences is dependent largely upon its size and 
shape and on the nature of the solvent. There is a 
variety of theoretical and empirical correlations o f f  
or D in terms of solvent and solute properties (102- 
105), but no single equation can account for all ex- 
perimental data. One of the most useful relation- 
ships for the frictional resistance of a particle in a 
homogeneous fluid is the Sutherland equation (103, 
106): 

(Eq.88) 

which relates f to solvent viscosity, v ;  solute radius, 
r; and a “slip” factor, 0. This equation is applicable 
for spherical particles in sufficiently dilute solution 
so that solute-solute interactions can be neglected. 
The slip factor, p, or more properly the coefficient of 
sliding friction is a measure of the tendency of sol- 
vent molecules to adhere to the diffusant. For large 
particles, the solvent molecules tend to be dragged 
along with the diffusant and p - a. If p is large, Eq. 
88 becomes Stokes’ law: 

f = 67r7r (Eq.89) 

If, on the other hand, the solvent and diffusant are of 
similar size, the tendency to slip is large and P - 0 
(i.e., there is very little resistance to slip) and Eq. 88 
becomes: 

f = 47r7r (Eq. 90) 

Equation 90 is particularly applicable to self-diffu- 
sion where the solvent and diffusant have identical 
dimensions. In cases where the solute is smaller than 
the solvent, it is frequently observed that the fric- 
tional resistance is less than 4nvr (106). 

It must be realized that the radius to be used in 
Eqs. 88-90 is not that of the bare molecule but of the 
hydrodynamic particle ( 106). The hydrodynamic 
particle consists of the diffusant molecule plus any 
solvent or solute (such as a complexing agent) that is 
adsorbed or bound to the surface or entrapped with- 
in the diffusant. If i t  is known that the diffusant hy- 
drates or complexes, the resultant volume increase 
must be accounted for in the equations. 

The above equations were derived for spherical 
particles but are applicable to ellipsoids. For oblate 
(saucer-shaped) and prolate (cigar-shaped) ellip- 
soids, the equations must be modified to account for 
the greater surface area and thus the greater resis- 
tance that a nonspherical particle experiences. Per- 
rin (107) and Herzog et al. (108) independently ex- 
tended Stokes’ law to ellipsoids of revolution. Their 
results are frequently expressed as the ratio of the 
frictional resistance of an ellipsoid, f e ,  to that of a lZ These values are computed from the average molecular velocity. I ) /h  
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sphere of equal volume f (106). For an oblate ellip- 
soid of major axis, a, and minor axis, b, the frictional 
ratio, F, is: Partial 

Table 111-Partial Molal Volumes of Some Common Atoms 
and 

Partial 
Molal Molal 

cm3/ cm3/ 
Atom moleb Group moleb 

(Eq.91) Volume, Volume, 

and for a prolate ellipsoid with axes (a, 6 ,  b): 

These functions were shown graphically by Tanford 
(106) for axial ratios up to 20. These calculations can 
be extended to a cylinder by approximating the cyl- 
inder with a prolate ellipsoid of the same volume. To 
obtain the axial ratio of the equivalent prolate 
spheroid, simply multiply the length over the diame- 
ter of the cylinder by 0.815 (106). These equations 
have been demonstrated to be valid for rigid ellipsoi- 
dal organic.ions ranging from 121 to 367 in molecu- 
lar weight (log),  for linear oligosaccharides contain- 
ing 1-6 sugar units (110), and for cyclic oligosacchar- 
ides (111). Similar equations have also been found 
useful for linear oligophenylenes (112). 

From the above discussion, it can be seen that for 
solutes whose molar volume, u,  is greater than or 
equal to the molar volume of the solvent, the diffu- 
sivity can be expected to range from: 

for small particles to: 
D = - ( )  KT 9 'in 

67r77F 3u 

( Eq. 93) 

(Eq. 94) 

for large particles. Note the correction for nonspheri- 
city in the large particle case. Assuming the viscosity 
of the solvent to be either known or readily measur- 
able, the only parameters needed to estimate D are 
the molar volume and the frictional ratio of the dif- 
fusant. Although these values are frequently difficult 
to measure experimentally, they can be estimated 
with reasonable accuracy. Fortunately, the molar 
volume of a substance is an additive property of its 
constituent atoms and functional groups, and i t  is 
thus possible to estimate u from the chemical formu- 
la of the diffusant. Some workers (104) preferred to 
calculate the van der Waals' volume of the solute 
while others (102, 113-117) chose the partial or ap- 
parent molal volume; still others (15, 118) deter- 
mined u from space-filling molecular models. In view 
of the approximate nature of atomic and group 
values and the possibility of solvent incorporation 
into the hydrodynamic particle, it is not possible to 
justify a theoretical preference for any of these ap- 
proaches. The partial molal volume is frequently 
easiest to calculate and has been used extensively in 
the estimation of protein hydrodynamic properties 
(106). It has also been used successfully in the calcu- 
lation of micelle surface charge density (119, 120) 
and in the estimation of solubility parameters (82). 
The partial molal volumes of some common atoms 
and groups are listed in Table 111. Many of these 

C 
H 
H +  
N 

- 

N +  

9 . 9  CH, 1 9 . 3  
3 . 1  CH2 1 6 . 2  
4 . 5  NH, 7 . 7  
1 . 5  N(CH,),+ 6 6 . 3  
8 . 4  COOH 19 .o  

0 (=0 or -0-) 5 . 5  coo- 
0 (-OH) 2 . 3  CZH, 
0 (dioll 0 . 4  CaHv 

11.5  
3 5 . 3  
5 1 . 7  

S 1 5 . 5  CiHs 67.9  
P 17.0 CAH,, 100.3 
P f  
Li + 

Na + 

K +  
c1- 
Br- 
I -  

2 8 . 5  
- 5 . 2  
- 5 . 7  

4 . 5  
2 2 . 3  
2 9 . 2  
4 0 . 8  

132.7 
CioH2i 165.1 
Ci2H25 197.5 
CI,H,D 229.9 
OCHKH, 37.9  "~ " 

One ring - 8 . 1  
Two fused - 2 6 . 4  

rings 

O P  191 . o  
(1 From Ref. 13. * T o  convert to A 3  per molecule, divide by 0.6023. 

values were originally determined by Traube (121) in 
1899. 

For nonspherical substrates, the axial ratio can be 
estimated from bond distances and group radii (122) 
or from space-filling molecular models. The frictional 
ratio can then be determined by solving Eqs. 91 and 
92. The inclusion of the frictional ratio amounts to 
less than a 10% correction for all but the most elon- 
gated structures and can thus be safely ignored in 
obtaining a first approximation of D. 

In their strictest sense, Fick's laws are valid only 
in highly dilute solutions where there is absolutely 
no interaction between solute molecules. Increasing 
concentration, C,  can result in an alteration of the 
thermodynamic activity coefficient of the diffusant. 
In general, if the solution and solvent have the same 
viscosity (123), then: 

D = D c d  [ l + C  (q)] (Eq. 95) 

It is obvious from this equation that if Henry's law is 
obeyed, D is linearly dependent on C ,  and if C is 
small, D is independent of concentration. If the so- 
lute concentration is sufficiently high, it can alter 
the solvent viscosity and thus exert a secondary ef- 
fect on its own diffusivity. Equation 95 can readily 
be modified to account for this effect: 

Certain solutes exhibit critical concentra,tions at 
which self-aggregation begins to occur. Critical phe- 
nomena are often associated with dramatic changes 
in a In -y/aC and viscosity, but there is another ef- 
fect which deserves special attention. Once the ag- 
gregate (dimer, trimer, or micelle) is formed, the size 
of the diffusing particle is 9 increased and, conse- 
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quently, diffusivity is decreased. Specific examples of 
aggregation in aqueous and nonaqueous solutions 
and their effects on diffusivity will be discussed in 
the next two sections. 

The presence of materials that can interact with 
the diffusant will invariably result in a decrease in 
the diffusion coefficient. The magnitude of the de- 
crease is related to the effective size difference of the 
diffusant alone and in the presence of the interac- 
tant. In general, if a 1:1 complex is formed, there will 
be only a slight change in D; but if a higher order in- 
teraction, such as a drug-micelle complex, is formed, 
there can be a very marked decrease in diffusivity. 
Complex and micelle formation are extremely impor- 
tant because of their effect on the partitioning prop- 
erties of the diffusant. This effect is discussed else- 
where in this review. Specific examples of self-associ- 
ation and association with other solutes will be dis- 
cussed in the next section. 

The observed effect of temperature on diffusivity 
in homogeneous fluids is a combination of several 
factors. An increase in temperature resuits in an in- 
tensification of thermal motion of the diffusant. This 
effect of kT results in a proportional increase in D, 
as expected from Eq. 87. A more important effect of 
temperature alteration is the accompanying change 
in solvent viscosity. For example, a temperature in- 
crease from 20 to 30" results in a viscosity change 
from 1.002 to 0.7975 cps for water (124). This 20% 
change is much greater than the 3.4% change in the 
value of kT. A temperature increase could also have 
an indirect effect on diffusivity by virtue of its struc- 
ture-breaking effect on complexes and micelles acd 
its effects on molecular activity coefficients. If these 
indirect effects are small and the effects of tempera- 
ture are only those predicted by Eqs. 89-94, the en- 
ergy of activation for diffusion in a solvent is a con- 
stant for that solvent. 

Diffusivity in Aqueous Solutions-The aqueous 
diffusivities calculated for some common substrates 
by Eqs. 93 and 94 which become: 

4.95 x 
D = "113 

and: 

(Eq. 97) 

(Eq. 98) 

in water at  25", and the partial molar volumes of 
Table I11 are listed in Table IV along with the exper- 
imentally determined values. In the case of the more 
nonspherical substrates, the axial ratio was estimat- 
ed from space-filling molecular models, and the fric- 
tional coefficient was calculated uia Eqs. 91 and 92. 

Virtually all of the experimental values of Table 
IV fall between the diffusivities calculated by Eqs. 
97 and 98. As would be expected from the above dis- 
cussion, the smaller diffusants are better approxi- 
mated by Eq. 97, whereas the larger ones approach 
Eq. 98. As can be seen from the table, the shape fac- 
tor described by Eqs. 95 and 96 is only important for 
certain special cases. The effect of alkyl chain length 
on the diffusivity is illustrated for several series in 
Fig. 6. For each of the six series shown, the diffusivi- 
ty decreases with chain length. For homologs con- 

f ( -  I S  assumed to be unity) 
fo  

I I I I 1 I 
20 40 60 80 100 120 

PARTIAL MOLAL VOLUME OF DIFFUSANT. crnJ/rnole 

Figure 6-Diffusivities of some simple homologous series as a 
function of partial mold volume. The plot indicates that polar 
moieties increase the hydrodynamic volume of the diffusing 
species, probably by forming strong hydrogen bridges to adja- 
cent water molecules. Key:  0, alkanes; 0, alcohols; A, amides; 
0, acids; 0, diacids; and V, a-amino acids. 

taining four or more carbons, diffusivities are within 
25% of the values calculated using Eq. 98. 

As would be expected from Eqs. 97 and 98, adding 
a methylene group to a substance decreases the dif- 
fusivity only slightly. The larger the molecule, the 
more insignificant is the effect of a single methyl 
group. For most homologous series in a partitioning 
system, it is probably safe to ignore the increase in 
diffusivity as the series is ascended because this ef- 
fect, is negligible compared to the change in the par- 
tition coefficient that accompanies the chain length 
elongation. In general, branching tends to make the 
molecule more compact and thus increases diffusivi- 
tY. 

Horowitz and Fenichel (125, 126) compared sever- 
al homologous series on the basis of diffusivity at a 
given molecular weight and concluded that, as a 
class, the alcohols diffuse more rapidly than amides 
which, in turn, diffuse faster than alkanes. They 
concluded that this behavior results primarily from 
the stabilized aqueous domains (icebergs) that are 
associated with hydrophobic molecules, the effect 
presumed larger in hydrocarbons than in alcohols or 
amides. This explanation seems unlikely because the 
hydrophobic surface area of a molecule such as eth- 
ane is not greatly different from that of ethanol and 
the latter can have additional water molecules firmly 
associated with it uia hydrogen bonding. Indeed, if 
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Table IV-Calculated and Experimental Aqueous Diffusivities a t  25" 

Diffusant 

Partial 
Molal Dcnie ( X  109 Dcelc ( X  lo6) 

Volume, (4.95 X3 10 Is) (3*361,: _~ lo-.) Dexper 
cm3/mole f l f o  v f l f o  ( X  lo6) Reference 

Methane 
Ethane 
Propane 
Butane 
Methanol 

Ethanol 

n-Propanol 

n-Butanol 

n-Pentanol 
Isopropanol 

Isobutanol 
sec-Butanol 
tert-Butanol 

Formamide 
Acetamide 
Propionamide 
Butyramide 
Isobutyramide 
Formic acid 
Acetic acid 
Propanoic acid 
Butyric acid 
Pentanoic acid 
Hexanoic acid 
Isobutyric acid 
Isopentanoic acid 
Chloroacetic acid 
Hydroxyacetic acid 
Oxalic acid 
Succinic acid 
Adipic acid 
a,w-Octanedioic acid 
Pyridine 
4-Methylpyridine 
2-Ethylpyridine 
4-E thylpyridine 
2-Propy lpyridine 
4-Propylpyridine 
4-tert-Butylpyridine 
4-n-Amy lpyridine 
Glycine 
a-Alanine 
13 -Alanine 
a-Aminobutyric acid 
a-Aminopentanoic acid 

(norvaline) 
a-Aminohexanoic acid 

(norleucine) 
a- Aminoisobutyric acid 
a-Aminoisopentanoic acid 

(valine) 
a-Aminoisohexanoic acid 

(leucine) 
Sererie 
Threonine 
Asparagine 
Proline 
H ydroxy proline 
Histadine 
Phen ylalanine 
Tryptophan 
Sodium lauryl sulfate 
Dimethyldodecylamine oxide 
Dodecylbenzenesulfonate 
Glucose 
Cellobiose 
Triose 
Tetrose 
Pentose 
Hexose 
a-C yclodextrin 
p-C yclodex trin 

22.4 
38 .6  
55.2 
71.3 
24.7 

40.9 

57 .1  

73 .3  

89 .5  
57 .1  

73.3 
73.3 
73 .3  

26.0 
42.2 
58 .4  
74 .6  
74.6 
22 .1  
38 .3  
54.5 
70.9 
86.9 

103 .1  
70.7 
86 .9  

40 .5  
70 .4  
86 .6  

102.8 
119 . o  
65.8 
82 . O  
98 .2  
98 .2  

114 .4  
114.4 
130.6 
46 .8  
42.9 
59 .1  
59 .1  
75.1 
91 .5  

107.7 

7 5 . 1  
91.5 

107.7 

60.8 
76.9 
78 . O  
81 .o 
89 .o 

235 
243 
293 
116ii 
222,' 
326,' 
432#1 
535C' 
63gn 

1090b 
1235h 

17 .5  
1 4 . 1  
13 . O  
11 .9  
17 . O  

14 .3  

12 .8  

11 .8  

11 .o 
12 .8  

11 . 8  
11 .8  
11.8 

16.7 
14 .2  
12 .7  
11 .7  
11.7 
17.6 
14.7 
13 . O  
12 .o 
11 .2  
10 .6  
12 .o 
11 .1  

14.4 
12 .o 
11 .2  
10.6 
10 .o 
12.2 
11 .4  
10 .7  
10.7 
1 0 . 2  
10.2 
9 . 7  
9 . 4  

14 .1  
12.7 
12.7 
11.7 
11 .o  
10 .4  

11.7 
11 .o 
1 0 . 4  

12 .5  
11 .6  
1 1 . 3  
11 .4  
11 .3  
10 .7  
10 .o 
9 .4  
8 .1  
7 . 9  
7 . 4  

1 0 . 1  
8 . 3  
7 .2  
6 . 5  
6 . 1  
5 . 7  
4 .8  
4 . 6  

1 .oo 
1 .oo 
1 .01  
1 .03  
1 .oo 

1 .oo 
1 .01  

1 . 0 3  

1 .05  
1 .oo 
1.01 
1 .oo 
1 .oo 
1 .oo 
1 .oo 
1 .03  
1 .05  
1 .03  
1 .oo 
1 .oo 
1 .oo 
1 .07  
1 .03  
1 .05  
1 .oo 
1 .oo 
1 .oo 
1 .oo 
1 .oo 
1.02 
1 . 0 3  
1 .05  
1 .oo 
1 .oo 
- 
- 
- 
- 
- 
- 

1 .oo 
1 .oo 
1 .oo 
1.02 
1 .03  

1 .05  

1 .oo 
1 .02  

1 .03  

- 
- 
- 
- 
- 
.- 

- 
~- 

1.07  
1 .07  
1.10 
1 .63  
1 .oo 
1 .07  
1.09 
1.19 
1 .24  
1 . 0 3  
1 . 0 4  

11.9 
9 . 7  
8 .6  
7 .7  

11.3 

9 . 6  

8 . 5  

7 . 6  

7 . O  
8 . 6  

7 . 8  
7 . 9  
7 .9  

11 .1  
9 . 5  
8 . 3  
7 . 5  
7 .6  

11.7 
9 . 8  
8 . 7  
7 .9  
7 .2  
6 .7  
8 .o 
7 . 4  

9 . 6  
8 .o 
7 . 3  
6 . 9  
6 .4  
8 . 2  
7 . 6  
- 
- 
- 
- 
- 
- 

9 . 4  
8 . 4  
8 . 4  
7 . 6  
7 . 1  

6 .6  

7 . 8  
7 . 2  

6 . 7  

__ 
-~ 
- 
- 
-. 

- 
__ 
~- 

5 . O  
4 . 9  
4 .5  
6 . 6  
5 . 2  
4 . 5  
4 . O  
3 .4  
3 . 1  
3 . 1  
3 . O  

18.8 
15.2 
12 .1  
9 . 6  

15 .8  
17 . O  
13 .7  
12 .4  
12.6 
10 .2  
11 .5  
9 . 5  

11 .o 
8 .8  

10.2 
10.7 
9 . 3  
9 . 2  
8 . 8  
9 .8 

17 .2  
13 .2  
12 .o 
10 .7  
1 0 . 2  
14.6 
12 .o 
10 .1  
9 . 2  
8 . 2  
7 . 8  
9 . 5  
8 . 2  

10 .o 
9 . 8  
8 . 6  
7 .9  
7 . 4  
7 . 1  

11 .4  
10 .8 
9 .8  

10 . o  
8 .8  

10 .o 
9 . 2  
9 . 5  

10 .6  
9 . 1  
9 . 3  
8 . 3  
7 .7  

7 . 2  

8 .1  
7 . 7  

7 . 3  

8 .8 
8 .o 
8 . 3  
8 . 8  
8 . 3  
7 .3  
7 . O  
6 .6  
6 .2  
5 .7  
6 . 1  
6 .8  
5 .2  
4.2 
3 .8  
3 .2  
2 .9  
3 . 4  
3 . 4  
3 . 2  

184 
184 
184 
184 
128 
185 
165 
128 
185 
128 
185 
128 
185 
165 
128 
185 
128 
128 
128 
185 
185 
185 
185 
185 
185 
127 
127 
127 
127 
127 
127 
127 
127 
127 
127 
127 
127 
127 
127 

3 
3 
3 
3 
3 
3 
3 
3 

128 
128 
128 
128 
128 

128 

128 
128 

128 

128 

128 
128 
128 
128 
128 
128 
135 
135 
140 
110 
110 
110 
110 
110 
110 
157 
157 
128 

128 

~ ~ ~~ ~ 

Author's values. 11 From dimensions given in Ref. 15 for overall molecule including hole. 



the diffusivities are compared on the basis of molec- 
ular volume rather than on molecular weight, a 
totally opposite conclusion is reached. 

When diffusivities are compared on the basis of 
volume (as in Fig. 6), the alkanes become the 
most rapidly diffusing materials, with the relative 
rates being alkanes > alcohols > amides > acids > 
amino acids > dicarboxylic acids. This order is what 
would be anticipated if “tightly” hydrogen-bonded 
water travels with the diffusant and thus increases 
its hydrodynamic volume. As expected, the effect of 
such hydration is proportionally lower for large mol- 
ecules, and the curves appear to merge at  volumes 
greater than 100 cm3/mole. 

Albery et al. (127) showed that  there is no signifi- 
cant difference between the diffusivities of nine car- 
boxylic free acids and their anions (Table IV). How- 
ever, their data  for a-dicarboxylic acids indicate a 
5% decrease in diffusivity on complete ionization. 
This decrease is consistent with the expected repul- 
sion of the negative charges of the dianion which re- 
sults in a more fully stretched out structure. It is 
also possible that  the di-free acids can form intramo- 
lecular hydrogen bonds, which would result in a 
more compact and possibly less hydrated cyclic 
structure. 

Longsworth (128) compared the diffusivities of 
zwitterionic glycine and neutral glycolamide which 
have the same molecular formula. Due to a greater 
degree of solvation of the former, its diffusivity is 
nearly 10% less than that  of the neutral compound. 
Wendt and Gosting (129) obtained similar results 
with alanine and its isomer lactamide. Likewise, 
Longsworth’s data for the diffusion of ortho-, meta-, 
and para-aminobenzoates show that  the diffusivity 
of the meta-compound, which exists as a zwitterion, 
is significantly less than the values obtained for the 
ortho- and para-isomers, which exist in solution as 
neutral molecules. The fact that  the more slowly dif- 
fusing species of each of the two above sets of iso- 
mers interact more strongly with water is evidenced 
by their higher degree of electrostriction (increase in 
the density of neighboring solvent molecules) (130, 
131). 

Since most aqueous solutions show a negative de- 
viation from Henry’s law, the observed diffusivity 
usually decreases as solute concentration increases. 
This decrease is frequently enhanced by the in- 
creased viscosity that  usually accompanies increased 
solute concentration. Certain compounds such as su- 
crose for which 8 In -y/aC is positive show a decrease 
in diffusivity with increasing concentration because 
of the resultant increase in viscosity (131). In gener- 
al, however, diffusivities determined a t  concentra- 
tions below 0.10 M are within a few percent of values 
determined by extrapolation to infinite dilution. 

Surfactants such as sodium lauryl sulfate, which 
tend to form large micelles in aqueous solution, have 
diffusivities that  are highly dependent upon concen- 
tration. Below the critical micelle concentration 
(CMC), the diffusivity of the monomer, D, is essen- 
tially independent of concentration. At the CMC, 
the apparent diffusivity begins to  decrease as mi- 

celles are formed; at concentrations significantly 
greater than the CMC, where the number of mono- 
mers is negligible compared to the number of micel- 
lar surfactant molecules, the diffusivity begins to 
level off. If the apparent diffusivity, Dapp, is plotted 
against reciprocal surfactant concentration, the Y in- 
tercept (reciprocal concentration equal to zero) is the 
diffusivity of the micelle, DM, in the absence of mo- 
nomer. This type of plot can be used to determine 
the CMC from diffusion coefficient data. According 
to the Stokes-Einstein equation, the ratio of DM to 
D is proportional to the cube root of the volume ratio 
(assuming no shape correction for either monomer or 
micelle). In the absence of any significant differences 
in the degree of hydration of monomer and micelle, 
the volume ratio is equal to  the aggregation number, 
n, of the micelle. Therefore, the diffusivities of mi- 
celles and monomer are related by: 

D M  = r1I3D (k. 99) 
Deviations from this relationship have been used 
(132-134) to estimate various properties of micelles. 

A substance that is not surface active can become 
associated with a surfactant micelle and thereby ac- 
quire the hydrodynamic properties of the micelle. 
This is possible for highly polar diffusants, such as  
cadmium ions, which are adsorbed on the micelle 
surface of nonionic surfactants (135) or for nonpolar 
materials such as testosterone ( 136), hydrocortisone 
(137), salicylamide (138), and salicylic and benzoic 
acids (139), which are incorporated within the mi- 
celle, and even for surfactants interacting with op- 
positely charged surfactants to form mixed micelles 
(140). 

As stated previously, in a homogeneous liquid such 
as water the effect of temperature upon diffusivity 
can usually be calculated from Eq. 87. Longsworth 
(141) found that  the ratios of 25” diffusivity to 1” dif- 
fusivity of 21 compounds varied between 2.049 and 
2.178, in excellent agreement with the calculated 
value of 2.107. Similar results were obtained by other 
workers (113, 142) for a variety of solutes. The ener- 
gies of activation calculated from aqueous diffusion 
data are generally between 4.5 and 5.0 kcal/mole. As 
expected from previous discussions, these values are 
in good agreement with the value of 4.2 kcal for vis- 
cous flow of water. 

Diffusivity in Nonaqueous Solutions-Ideally the 
only difference between diffusivities of a substance in 
various solvents is due to the different viscosities of 
the solvents. In practice, however, this is not the 
case. A large solute such as benzoic acid, whose fric- 
tional resistance in water is described by Eq. 89, 
might be of comparable size to  solvent molecules of 
carbon tetrachloride or benzene and thus its friction- 
al resistance would be described by Eq. 90 in 
these solvents. Also, interactions that  can occur in 
one solvent may not be significant in another. There 
are a number of compilations of diffusion coefficient 
data for many nonaqueous solvents (102, 104, 143) as  
well as a number of semiempirical methods of calcu- 
lating L) in terms of solvent and solute properties 
(102-105). 
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Table V-Diffusivities in Chloroform from Longsworth (143) at  25” 

D iff usant 
Volume, 4.95 x 

crn”mole 

Pentane 87 11 .2  1.05 7 . 1  15 .7  
Hexane 103 10 .5  1 .06  6 . 6  15 .O 
Heptane 120 10 .o 1.07  6 . 2  13 .5  
Octane 136 9 . 6  1 .08  5 . 9  12 .6  
Decane 168 9 .o 1 .10  5 . 5  10 .8  
Dodecane 201 8 . 5  1 .14  5 . O  9 . 5  
Hexadecane 265 7 . a  1 .22  4 . 3  7 . 8  
Octadecane 297 7 . 4  1 .25  4 . O  6 . 9  
Ercosane 330 7 . 1  1 .27  3 . 7  6 . 6  
Docosane 362 7 .O 1 .33  3 . 5  6 . 2  
Octacosane 459 6 . 4  1 .37  3 . 1  5 . 3  
Dotriacontane 525 6 . 1  1 .35  2 . 9  4 . 8  
Methanol 25 16 .9  1 .oo 11 .3  26 .1  

Tetramer 100 10 .7  1 .oo 7 . 1  11 .3  0 . 2  M 
Ethanol 35 15 .1  1 .oo 10 .1  19 .5  

Tetramer 100 9 . 5  1 .oo 6 . 4  7 . 9  0 . 5  M 
Hexadecanol 268 7 . 8  1 .22  4 . 3  7 . 4  Dilute 

Tetramer 1072 4 . 9  1. .oo 3 . 2  3 . 7  0 . 4  M 
Acetic acid 32 15 .7  1 .oo 10 .4  . . .  

Dimer 64 1 2 . 4  1 .05  7 . 9  14 .2  
Hexadecanoic acid 265 7 . 8  1 . 2 2  4 . 3  . . .  

Dimer 530 6 . 1  1 .31  2 . 9  4 . 5  

Because we are primarily interested in diffusion 
through water or through membranes, the discus- 
sions will be confined to a single nonaqueous solvent, 
carbon tetrachloride. This solvent has been studied 
extensively and serves as a model nonpolar phase in 
which the aggregation behavior of polar solutes can 
be illustrated. The interactions which occur in car- 
bon tetrachloride likely also occur in nonpolar mem- 
branes. 

Table V shows the diffusivities obtained by Longs- 
worth (143) for several substances in carbon tetra- 
chloride, along with the values calculated by Eqs. 93 
and 94 (coincidentally, carbon tetrachloride and 
water have nearly the same viscosity at 25” so that  
Eqs. 97 and 98 can be used directly). Because of the 
large molecular size of carbon tetrachloride ( V  = 315 
cm3/mole) compared to  water ( V  = 18 cm3/mole), 
the diffusivities of solutes whose volume is signifi- 
cantly less than 315 cm3/mole are not adequately 
described by either of these equations. Solutes of 
sizes comparable to  that of carbon tetrachloride ap- 
pear to be described by Eq. 93 to  a satisfactory ex- 
tent, and larger solutes have diffusivities between 
the value expected from Eqs. 93 and 94. Interactions 
between polar functional groups are extremely im- 
portant in nonpolar solvents such a s  carbon tetra- 
chloride or benzene. This is illustrated by some data 
in Table V. Hexadecanoic acid has nearly the same 
molar volume as hexadecane, yet, because it exists 
as a dimer in carbon tetrachloride, its diffusivity is 
similar to that of dotriconatane, a 32-carbon alkane. 
Because of the large dimerization constant of organic 
acids in nonpolar solvents, Longsworth (143) was un- 
able to determine experimentally the diffusivity of 
the monomeric acid. The constancy of D with con- 
centration suggests that no higher order aggregates 
of the acids are formed. This is in agreement with 
the spectral and partitioning data of Aveyard and 
Mitchell (144). Alcohols, on the other hand, have 
much smaller association constants, and Longsworth 

was able to  illustrate dramatic concentration depen- 
dencies. The values he obtained for high concentra- 
tion of hexadecanol suggest that  tetramers and pos- 
sibly higher order aggregates can be formed. This is 
again in agreement with spectral and partitioning 
data  (145). 

Gels--A gel consists of a complex three-dimen- 
sional network of polymeric material which imparts 
rigidity to the phase. The degree of solution struct- 
uring and, hence, the solution viscosity is dependent 
upon the chain length and the degree of cross-linking 
of the polymer. The presence of the gel substance 
can modify the observed diffusivity by either inter- 
acting with and adsorbing the diffusant on its sur- 
face or by mechanically blocking the path of the per- 
meant. Highly concentrated gels can behave as a fil- 
ter and show diffusional specificity on the basis of 
diffusant size. The case in which the gel is sufficient- 
ly concentrated to act as a filter will be treated in 
the next section as a porous barrier. In this and the 
next section, only aqueous gels and aqueous pores 
will be discussed. The discussion, however, can be 
applied directly to other systems. 

Since in gelatinous and porous media the diffusion 
occurs only in the fluid phase, the relationship be- 
tween diffusivity and the other parameters discussed 
for pure liquid phases are generally applicable. This 
and the following section will be concerned only with 
the alteration in diffusivity produced by the presence 
of the solid phase. The case in which the solid phase 
is also permeable to  the diffusant can be treated as a 
parallel pathway in accordance with the principles 
described previously. 

The mechanical blockage of diffusion in polymer 
solutions (obstruction effect) is related to the volume 
fraction of polymer and not to  the degree of poly- 
merization or cross-linking of the polymer. The latter 
parameters affect only bulk viscosity and not micro- 
scopic viscosity, i .e.,  the viscosity of the entrapped 
fluid phase. Since the solute travels primarily 
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through the fluid phase and collides with individual 
polymer segments, the microscopic viscosity and the 
number of polymer segments present determine dif- 
fusivity. The lack of importance of bulk viscosity was 
verified by Taft and Malm (146), who showed that 
the diffusivity of salts through aqueous gelatin solu- 
tions before and after setting is unchanged. Lauffer 
(147) showed, by electrical analogy, that for random- 
ly oriented long thin rods: 

(Eq. 100) D, 
2 D ,  = __ 

1-36 

For the case in which the gel becomes saturated with 
diffusant: 

(Eq. 102) 

where k is a constant. 
Unlike the obstruction effect, the adsorption effect 

is strongly dependent upon the chemical nature of 
the diffusant. The value of K is dependent upon the 
number of adsorptive sites for a given diffusant per 
unit volume of Dolvmer and on the relative degree of 
solute attractio; i f  the solvent and the adsirptive 

In general, the number of sites available to a 
particular depends upon the solute9s polar 
functional groups. For example, a particular polymer 
might have more sites that are capable of interacting 
with carboxylates than sites that can bind amines. 

For a particular polymer and a series of com- 
pounds having the Same functional groups (such as a 

where D, and D, are the diffusion coefficients of the 
small solute in water and in an aqueous gel contain- 
ing volume fraction, 4, of polymer, respectively. The 
effect of increasing diffusant size in a polymer solu- 
tion over and above the effect of size on D, is slight- 
ly to increase the collision diameter and thus the 
likelihood of an interaction between diffusant and 
polymer- In other WordS, 
affected by the presence Of polymeric 

diffusants be less 
than homologous series), the value of K for each member 

will usually depend upon the solubility of that 
pound. Therefore, since solubility usually decreases 

would be expected to increase exponentially as the 
series is ascended. 

If the increase in diffusivity is the result of adsorp- 
tion of the diffusant, it is possible to counteract this 
effect by the addition of' a competitive adsorbent. 

min reduced the apparent diffusivity of chloram- 

large ones. 

there should be no specific structural effects (other 
than size as already mentioned); i .e.,  polar and non- 
polar molecules of the same size should be affected 
to the Same extent. Horowitz and Fenichel (125) de- 
termined the diffusivities of a variety of solutes in an 

100, they found that the ratio of diffusivities in water 

If the effect of the polymer is exponentially with chain length (80), the value of K 

aqueous dextran gel. As be from Eq. Alhaigue et al, (152) showed that bovine serum albu- 

and in gel to be independent Of temperature phenicol significantly and that it was possible to re- and Of solute size and polarity. Since the gels that turn the diffusivity nearly to its aqueous value .by they used contained 18.3 f 0.9% dextran, the ex- 
pected ratio based on Eq. 100 is 0.82. Their observed 
ratios of 0.65 f 0.05 can be explained if it is assumed 
that about two volumes of water are associated with, 
or in some way immobilized by, each volume of poly- 
mer. This is consistent with the results of Friedman 

the addition of amounts of sodium 
lauryl sulfate. 

Pores and Their Influence-As already mentioned, 
there is no clearcut distinction between diffusion 
through a dense gel and through a highly porous 
phase. In either case, when the regions available for (148) for diffusion are very large compared to the molecular 

gels, Of and Thomas for anion diffu- dimensions of the diffusing species, the previous dis- 
sion, and of Nakayama and Jackson (150) for water cussion can be applied directly. However, when 4 is 

nonelectrolytes in gelatin and agar 

in agar gels, who found 3.4 and 3.6 g large, it is frequently more meaningful to character- 
gel. The amount of ize the membrane by its porosity, = 1 - 4, and a water immobilized/g 

immobilized water is diminished at  high salt con- 
centration where hydration is reduced. 

In addition to decreasing diffusivity by obstructing 

interacting with or adsorbing the diffusant. The ad- 

to retard diffusion in much the same way as the pas- 

tortuosity factor, T, as described previously.  hi^ 
section deals with the case in which the diffusing 
particle diameter approaches the pore diameter and 

sion will be directed specifically to uniform right cir- 

are 

the Permeant's Path, a gel can decrease diffuSivitY by free diffusion can no longer occur. While the discus- 

sorption ofthe diffusant onto the gel substance tends cular pores and to dense gels, the principles involved 
generally applicable. sage Of a 

'lowed 
a chromato~aphic is I t  has been repeatedly observed that the flux of a 

solute through a small aqueous pore is less than the Onto the As in the 
of the obstruction effect, the adsorption effect is de- 
pendent upon the 
present and not on the viscosity of the solution. If K 
is the adsorption constant of the diffusant per unit 

not saturated with diffusant, the diffusivity in the 
presence of an adsorbing polymer, Dpads ,  is given by 

value calculated from the aqueous diffusivity 
and the geometry of the pore. The magnitude of the 
discrepancy between diffusivity in the pore, Dp,  and 
in free solution, D f ,  has been shown (47-49) to be re- 

drical pore radius, r,, by: 

4y Of 

Of gel, and conditions are such that the gel is lated to the spherical solute radius, rs, and the cylin- 

(151): 
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The first portion of the Renkin (49) equation was 
originally proposed by Ferry (153) to account for the 
statistical likelihood of a particle entering a pore. 
The remainder of the equation was proposed by 
Lane and Perry (154) to represent the solvent drag 
on a solute molecule traversing a narrow pore. It 
should be noted that  according to  Eq. 15, Dp - D f  
as rs/rp - 0 and D p  - 0 as rs - r,. Equation 103 
can be approximated successfully by: 

for r s / rp  < 0.2. Beck and Schultz (15) found that  
these equations adequately described the passage of 
seven solutes with diverse molecular volumes 
through right cylindrical pores ranging from 45 to 
300 A in diameter. 

I t  can be seen from Eqs. 103 and 104 that  large 
particles are slowed to  a much greater extent than 
are small ones in their passage through narrow pores. 
Consequently, substances that  differ only slightly in 
free diffusion coefficients can have D p  values that  
are greatly different. The technique of differential 
dialysis capitalizes on this principle and has been 
used successfully to separate substances differing by 
only a factor of 2 in molecular weight. It has been 
shown (155) that  the dialysis rates of glucose and su- 
crose across acetylated membranes (Visking) differ 
by a factor of 8.6 while the free diffusivities of these 
sugars differ by only a factor of 1.29. This and other 
examples of size segregation by dialysis membranes 
wefe reviewed (155, 156). 

For nonspherical particles, some choice must be 
exercised in obtaining a value for r s .  Gary-Bob0 et 
al. (157) stated that the minimum cross-sectional ra- 
dius gives better correlation than the equivalent 
spherical radius (3r/4r)lI3 for permeation through 
dense cellulosic membranes. Certainly, in systems 
that involve bulk flow of solvent, the diffusants can 
be expected to have a preferential orientation in the 
direction of flow. But in the absence of bulk flow, 
where the particles are randomly oriented, it is diffi- 
cult to justify the use of the cylindrical radius over 
the equivalent spherical radius. The data (155, 156) 
for the passage of linear oligosaccharides across 
acetylated membranes (Visking) show much better 
correlation with spherical radius than minimum cy- 
lindrical radii. Craig and Pulley (155) also found 
similar dialysis rates for a linear hexose and a cyclo- 
hexose, which have very different minimum radii. 

This relationship among pore radius, solute ra- 
dius, and solute diffusivity enabled Solomon and his 
coworkers (158-160) to calculate an  “equivalent pore 
radius” for a biological membrane. From the dif- 
fusivities of several solutes, they calculated an equiv- 
alent pore radius of 3.5-4.5 A for erythrocyte mem- 
branes. Similarly, Stein (123) showed that  several 
other biological barriers have equivalent pore radii 
between 4 and 6 A. Interestingly, Solomon and 
Gary-Bob0 (158) showed that lipid bilayers, treated 
with nystatin or amphotericin, also have equivalent 
pores between 4 and 6 A in radius. 

The validity of the equivalent radius calculation is 

strictly dependent on the assumption that all solutes 
permeate only through aqueous pores. It is inappro- 
priate t o  discuss such a radius for a solute having 
any reasonable degree of hydrophobicity; conse- 
quently, the equivalent pore is of limited value in 
understanding the permeation of most drug mole- 
cules. Additionally, most drugs have radii similar to 
or greater than the equivalent pore radii of biological 
barriers and thus are incapable of pore transport. 

Diffusivity in Amorphous Isotropic Polymers 
(A boue T,)-In polymers, it is not possible to  relate 
diffusivity to  molecular size by a simple theoretically 
valid equation such as  Eqs. 93 and 94. Although 
there is a good deal of data  available for diffusion 
coefficients in polymers, the theory is not sufficiently 
developed to  provide a complete theoretical model. 
Several theoretical and empirical relationships have 
been developed (161-164) and are of value in certain 
instances. One major obstacle to  quantitating diffu- 
sivity in polymers is the inability to describe ade- 
quately viscosity for a solid or semisolid. For this 
reason, most theories must rely upon free volume ap- 
proaches. These theories emphasize the spaces with- 
in the polymer which are available for diffusion of a 
particle rather than the frictional resistance that  the 
particle experiences. The available data are more 
consistent with the free volume approach than with 
a frictional resistance or viscosity approach. 

In general, diffusivity in polymers is more sensitive 
to molecular size (or molecular weight) than in ho- 
mogeneous liquids. In most polymers, it is possible 
to  relate log D empirically to some function of mo- 
lecular size. One commonly used relationship is: 

log D = - S C  log u + k ,  = - S M  log M + k,+f (Q. 105) 

where M is molecular weight; v is molecular volume; 
and su, S M ,  k u ,  and kM are constants. Whereas su in 
fluid media is a constant equal to  one-third [some 
workers (123, 164) allow S M  to  vary between one- 
third and one-half], so can be as high as 4 for poly- 
mers (93, 164). Another frequently used relationship 
is: 

log D = -P,(u) + q L  = - p , d M )  + q,w (Eq. 106) 

where the p’s and q’s are constants for a particular 
polymer. Stein and Nir (165) prefer the latter equa- 
tion because it can be justified on theoretical 
grounds. However, they also point out the fact that 
for small variations in molecular size the equations 
are mathematically similar. 

In polymers the value of D is much more sensitive 
to molecular shape than in liquids. In a liquid, diffu- 
sivity decreases with deviation from a spherical 
shape (cf . ,  Eqs. 95 and 96); in polymers, a sphere 
usually has a much lower diffusion coefficient than 
an ellipsoid of the same volume. The chemical na- 
ture of the diffusant is of secondary importance to its 
size and shape for diffusion in nonpolar polymers. 
Functional groups become important in the situa- 
tions where interaction can produce an aggregate 
whose geometry differs significantly from that  of the 
monomer and where there is interaction with fixed 
sites on filler surfaces. 
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Table VI-Diffusivities of Alkanes in Some Polymers 

Polymer 

Natural Fubber Linear Ethylcellulose Silicone Rubber 
Polyisobutylene 40 Polyethylene 50 O 50 O 

Diffusant (D x 109) (D x 107) 25 ' ( D  x 109) (D x 108) 

- - 14.5  (171) - - Methane 
Ethane - 5.47 (171) - 
Propane 4 . 8  (173) 3 . 4  (171) 
n-Butane 3 . 2  (173) 4 .3  (172) 

3 4 (171) 

- - 
- - - 

- 8 . 5  (178) 11 .8  (178) 
- - - - . - , - . - , 

- 2 . 1  (178) 7 .7  078)  
6 . 9  (178) - 5 . 6  (178) 

Isobutane 1 . 5  (173) 2 .8  (172) 
n-Pentane 2 .6  (173) 4 . 2  (172) 
Isopentane 1 . 3  (173) 2 .3  (172) - - - 

1 . 4  (172) 
- - 4 . 4  (177) 

Neopentane 0 .6  (173) 
n-Hexane 
Isohexane - - 2 .4  (177) 

- 2 . 2  (178) 4 . 3  (178) 
- - 
- - 

- 3-Methylpentane - - 2.4 (177) - 
Neohexane - - 0 .7  (177) - 

C yclohexane - - 2 .3  (177) 

n-Octane - - 1 . 8  (177) 
n-Decane - - 0 .7  (177) 

- 
- - 
- - - - n-Heptane 3 . O  (174) 
- - 

- - 

The vast majority of studies of the diffusivity of a 
series of permeants through a polymer involve either 
gases or normal and branched paraffins. The gases 
provide a means of studying the effect of size without 
significantly altering diffusant shape. With the linear 
paraffins, it is possible to change only one dimension 
of the permeant while keeping its cross-sectional 
area constant. The isomeric paraffins enable one to 
keep volume constant and to study the effects of al- 
tering diffusant shape. Most studies using gases 
show good fit to equations of the form of Eq. 105 or, 
more often, Eq. 106. 

The importance of shape on diffusion in polymers 
is illustrated by the many studies (93, 161, 166-179) 
on diffusion of normal isomeric alkane vapors in var- 
ious polymers. The following general trend in dif- 
fusivities is observed (see Table VI): methyl > ethyl 
> propyl >_ butyl >_ pentyl 2 octyl > isobutyl 2 iso- 
pentyl > neopentyl. In other words, after a mini- 
mum chain length is reached (propyl), the addition 
of a methyl group to extend a linear chain has only a 
slight effect on D. However, the addition of branched 
methyl groups tends to reduce the diffusion coeffi- 
cient significantly. 

It is obvious then that  neither mass nor molecular 
volume alone can be satisfactorily correlated with 
diffusivity for asymmetric solutes in polymers. Mi- 
chaels and Bixler (179) found that, for purposes of 
correlation with Eq. 106, the square root of the ratio 
of molecular volume to the maximum linear dimen- 
sion of the molecule can be used with satisfactory re- 
sults. Another means of calculating the effective di- 
ameter, d, is to  take the diameter of the smallest cir- 
cle through which the molecule can pass. 

The use of d instead of u is frequently less neces- 
sary when the correlation is being made by Eq. 105 
rather than Eq. 106. This is because log u (or log M )  
is less sensitive to changes in u or M as these param- 
eters increase. In other words, adding a methyl group 
to a long chain has only a small effect on log u and 
no effect on d. 

Crank and Park (180) and Park (181, 182) found 
excellent correlation between log D and u for halo- 

methanes. In their studies, the more nonspherical 
haloethanes and especially the halopropanes-showed 
significantly higher values of D than would be ex- 
pected on a volume basis. The use of the effective 
diameter improved the correlation somewhat, but 
best fit was obtained by fitting log D to an  empirical 
function of u and d. 

While it is evident that  the above studies cannot 
be described by a single correlative equation, the fol- 
lowing generalizations appear to be prevalent in 
these and other systems: (a) diffusivity decreases 
with molecular size; ( b )  diffusivity becomes less sen- 
sitive to size as size is increased (this is especially 
true for increases in length such as accompany the 
extension of a homologous series); and (c) branched 
compounds have lower diffusivities than their linear 
isomers. These findings, as  well as the commonly ob- 
served temperature and concentration dependencies 
of D, are all consistent with the free volume theory of 
Eyring and its many modifications. Basically, these 
theories relate D to the size and shape of preexisting 
cavities in the polymer. The partial alignment of 
polymer chains would result in greater number of cy- 
lindrical holes than spherical ones and, thus, can ex- 
plain the observed shape dependencies of diffusivity. 

The size dependencies observed presumably result 
from the fact that there are a larger number of holes 
capable of containing a small molecule than there 
are holes that can accommodate a large penetrant. 
The different values of su, S M ,  e tc . ,  are thus the re- 
sult of different distributions of hole sizes in different 
polymers. A complete detailed discussion of the com- 
monly used free volume theories can be found in Ref. 
161 (chap. 4). 

In  most instances of diffusion in polymers, the ef- 
fect of temperature is given by an equation identical 
in form to  Eq. 35, thus: 

D = D o e - E 0 / R T  (Eq. 107) 

where Do and Ea are constants. The value of Ea, the 
energy of activation for diffusion, tends to increase 
linearly with diffusant size (178) until a plateau 
value which is characteristic of the polymer is 
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reached. This was nicely illustrated by Auerbach et 
al. (174) who showed that the energies of octadecane 
and hexatriconatane are nearly equal’ in polyiso- 
butylene. This type of behavior was interpreted by 
Meares (178) as indicating that small solutes can dif- 
fuse without the complete rotation of the chain seg- 
ments which is necessary for diffusion of larger pene- 
trants. The independence of Ea from diffusant size is 
similar to the situation found in water and other liq- 
uids. However, Ea is much larger for polymers than 
for liquids. Values commonly range from 7 to 20 
kcal/mole. As the temperature of an amorphous 
polymer is lowered below its glass transition point, 
crystallites begin to form. Since these crystallites are 
for all practical purposes unavailable for diffusion, 
they act as impermeable inclusions in the polymeric 
diffusional field. 

Diffusion coefficients in polymers are almost in- 
variably related to diffusant concentration by: 

D = D,-<)e “ (Eq. 108) 

where A is a constant at  any given temperature in a 
particular polymer. This equation is frequently 
found to be valid over several orders of magnitude of 
D. Aitken and Barrer (171) and others obser-ved that 
A is nearly constant and independent of size for most 
solutes. Deviations from Eq. 108 will, of course, 
occur if there is a tendency for the diffusant to self- 
associate. Certain molecules such as fatty acids and 
alcohols can aggregate in nonpolar membranes just 
as they might in nonpolar solvents. Auerbach et al. 
(174)’ found the following diffusivities in polyiso- 
butylene at  100”: octadecane, 1.97 x octadeca- 
nol, 1.56 X octadecanoic acid, 0.74 X 
and octadecanoyl octadecanoate, 0.46 X cm2/ 
sec. These values have been interpreted as indicating 
that stearic acid exists almost exclusively as a dimer 
in the medium. They further suggest a weak associa- 
tion of octadecanol. 

If the diffusant is present in sufficient concentra- 
tion (>1%), it can dilute or solvate the polymer, ex- 
panding and “loosening” the polymer matrix, with 
the swelling producing secondary effects on the per- 
meant’s diffusivity, leading to significant deviation 
from Eq. 108. This effect was recently discussed by 
Schultz and Asunmaa (183) and will not be pursued 
here13. 
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